Как найти объем куба если известна площадь поверхности 5 класс

Нахождение объема куба: формула и задачи

В данной публикации мы рассмотрим, как можно найти объем куба и разберем примеры решения задач для закрепления материала.

Формула вычисления объема куба

1. Через длину ребра

Объем (V) куба равняется произведению его длины на ширину на высоту. Т.к. данные величины у куба равны, следовательно, его объем равен кубу любого ребра.

V = a ⋅ a ⋅ a = a 3

2. Через длину диагонали грани

Как мы знаем, грани куба равны между собой и являются квадратом, сторона которого может быть найдена через длину диагонали по формуле: a=d/√ 2 .

Следовательно, вычислить объем куба можно так:

Примеры задач

Задание 1
Вычислите объем куба, если его ребро равняется 5 см.

Решение:
Подставляем в формулу заданное значение и получаем:
V = 5 см ⋅ 5 см ⋅ 5 см = 125 см 3 .

Задание 2
Известно, что объем куба равен 512 см 3 . Найдите длину его ребра.

Решение:
Пусть ребро куба – это a. Выведем его длину из формулы расчета объема:

Задание 3
Длина диагонали грани куба составляет 12 см. Найдите объем фигуры.

Решение:
Применим формулу, в которой используется диагональ грани:

Источник

Объемы фигур. Объем куба.

Куб — трехмерная геометрическая фигура, у которой все ребра равны (длина равна ширине и равна высоте).

У куба шесть квадратных граней, которые пересекаются под прямым углом и стороны которых равны.

Вычислить объем куба легко – нужно перемножить длину, ширину и высоту. Так как у куба длина равна

ширине и равна высоте, то объем куба равен s 3 ,

где s – длина одного (любого) ребра куба.

Воспользуйтесь онлайн калькулятором для расчета объема куба: объем куба, онлайн расчет.

Для расчета объемов других тел воспользуйтесь этим калькулятором: калькулятор объемов фигур.

Метод 1 из 3: Возведение в куб ребра куба

  • Найдите длину одного ребра куба. Как правило, длина ребра куба дана в условии задачи. Если вы

вычисляете объем реального объекта кубической формы, измерьте его ребро линейкой или рулеткой.

Рассмотрим пример. Ребро куба равно 5 см. Найдите объем куба.

Читайте также:  Вычислите объем аммиака образующегося при взаимодействии 5 л водорода н у с азотом

Возведите в куб длину ребра куба. Другими словами, умножьте длину ребра куба саму на себя три раза.

Если s — длина ребра куба, то

и, таким образом, вы вычислите объем куба.

Этот процесс аналогичен процессу нахождения площади основания куба (равна произведению длины на

ширину квадрата в основании) и последующему умножению площади основания на высоту куба (то есть,

другими словами, вы умножаете длину на ширину и на высоту). Так как в кубе длина ребра равна ширине и

равна высоте, то это процесс можно заменить возведением ребра куба в третью степень.

В нашем примере объем куба равен:

  • К ответу припишите единицы измерения объема. Так как объем – это количественная

характеристика пространства, занимаемого телом, то единицами измерения объема являются кубические

В нашем примере размер ребра куба давался в сантиметрах, поэтому объем будет измеряться в кубических

сантиметрах (или в см 3 ). Итак, объем куба равен 125 см 3 .

Если размер ребра куба дается в других единицах, то и объем куба измеряется в соответствующих

Например, если ребро куба равно 5 м (а не 5 см), то его объем равен 125 м 3 .

Метод 2 из 3: Вычисление объема по площади поверхности

  • В некоторых задачах длина ребра куба не дана, но даны другие величины, с помощью которых вы

можете найти ребро куба и его объем. Например, если вам дана площадь поверхности куба, то разделите

ее на 6, из полученного значения извлеките квадратный корень и вы найдете длину ребра куба. Затем

возведите длину ребра куба в третью степень и вычислите объем куба.

Площадь поверхности куба равна 6s 2 ,

где sдлина ребра куба (то есть вы находите площадь одной грани куба, а затем умножаете ее на 6, так

как у куба 6 равных граней).

Рассмотрим пример. Площадь поверхности куба равна 50 см 2 . Найдите объем куба.

  • Разделите площадь поверхности куба на 6 (так как у куба 6 равных граней, вы получите площадь

одной грани куба). В свою очередь площадь одной грани куба равна s 2 , где s – длина ребра куба.

В нашем примере: 50/6 = 8,33 см 2 (не забывайте, что площадь измеряется в квадратных единицах — см 2 ,

  • Так как площадь одной грани куба равна s 2 , то извлеките квадратный корень из значения площади

одной грани и получите длину ребра куба.

В нашем примере, √8,33 = 2,89 см.

  • Возведите в куб полученное значение, чтобы найти объем куба.

В нашем примере: 2,89 * 2,89 * 2,89 = 2,893 = 24,14 см 3 . К ответу не забудьте приписать кубические

Метод 3 из 3: Вычисление объема по диагонали

  • Разделите диагональ одной из граней куба на √2, чтобы найти длину ребра куба. Таким образом,
Читайте также:  Как найти объем многогранника все его двугранные равны

если в задаче дана диагональ грани (любой) куба, то вы можете найти длину ребра куба, разделив

Рассмотрим пример. Диагональ грани куба равна 7 см. Найдите объем куба. В этом случае длина ребра куба

равна 7/√2 = 4,96 см. Объем куба равен 4,963 = 122,36 см 3 .

Запомните: d 2 = 2s 2 ,

где d — диагональ грани куба, s – ребро куба. Эта формула вытекает из теоремы Пифагора, согласно

которой квадрат гипотенузы (в нашем случае диагональ грани куба) прямоугольного треугольника равен

сумме квадратов катетов (в нашем случае ребер), то есть:

d 2 = s 2 + s 2 = 2s 2 .

  • Разделите диагональ куба на √3, чтобы найти длину ребра куба. Таким образом, если в задаче

дана диагональ куба, то вы можете найти длину ребра куба, разделив диагональ на √3.

Диагональ куба — отрезок, соединяющий две вершины, симметричные относительно центра куба, равный

(где D — диагональ куба, s – ребро куба).

Эта формула вытекает из теоремы Пифагора, согласно которой квадрат гипотенузы (в нашем случае

диагональ куба) прямоугольного треугольника равен сумме квадратов катетов (в нашем случае один катет –

это ребро, а второй катет – это диагональ грани куба, равная 2s 2 ), то есть

D 2 = s 2 + 2s 2 = 3s 2 .

Рассмотрим пример. Диагональ куба равна 10 м. Найдите объем куба.

Источник

Найдите объем куба,если площадь его поверхности равна 96см2

Ответ или решение 2

Нам необходимо найти объем куба при известной площади его поверхности.

Разделим решение задачи на этапы:

  1. выразим формулу для нахождения площади поверхности куба;
  2. выразим итоговую формулу для нахождения объема;
  3. найдем объем куба.

Выразим формулу для нахождения площади поверхности куба

Нам известно, что площадь поверхности куба равна сумме площадей всех его граней. Мы знаем, что каждая грань куба представляет собой квадрат, площадь которого вычисляется исходя из следующей формулы:

где H — длинна ребра рассматриваемого квадрата.

Так же мы знаем, что куб, в свою очередь, имеет 6 одинаковых граней. Таким образом мы получаем, что формула для нахождения площади поверхности куба будет иметь следующий вид:

Sкуб = 6 * H 2 (1)

Выразим итоговую формулу для нахождения объема куба

Нам известно, что все грани куба равны и следовательно объем куба вычисляется как длинна его ребра взведенная в куб. То есть мы получаем следующую формулу:

Vкуб = H 3 (2)

Выразим длину ребра из формулы площади поверхности куба (1):

где sqrt — корень квадратный.

Таким образом формула для вычисления объема куба (2) примет вид:

Vкуб = H 3 = (sqrt(Sкуб / 6)) 3 = (Sкуб / 6) 3/2 (3)

Найдем объем куба

Из условия задачи нам известно, что площадь поверхности куба составляет Sкуб = 96 см 2 . Подставляем данное значение в итоговую формулу (3) и получаем, что объем рассматриваемого куба составляет:

Читайте также:  Как найти модуль нормального ускорения

Vкуб = (Sкуб / 6) 3/2 = (96 / 6) 3/2 = 16 3/2 = 4 3 * 2/2 = 4 3 * 1 = 4 3 = 64 см 3

Ответ: Vкуб = 64 см 3

Поверхность куба состоит из шести одинаковых граней, каждая из которых представляет собой квадрат.

Значит, если мы разделим площадь поверхности куба на 6, то получим площадь одной грани:

Площадь грани куба равна квадрату её стороны. Следовательно сторона нашего куба будет равна:

Как известно, объём куба равен V = a³, значит объём нашего куба равен: V = 4³ = 64 cм³.

Источник

Площадь поверхности куба

Онлайн калькулятор

Чему равна площадь поверхности куба, если:

Чему равна площадь поверхности куба, если:

Чему равна площадь поверхности куба, если:

Теория

Площадь поверхности куба через ребро

Чему равна площадь поверхности куба Sпов, если длина его ребра a:

Формула

Пример

Для примера, посчитаем чему равна площадь поверхности куба, если он имеет длину рёбер a = 5 см :

Площадь поверхности куба через диагональ

Чему равна площадь поверхности куба Sпов, если длина диагонали этого куба d:

Формула

Пример

Для примера, посчитаем чему равна площадь поверхности куба, если длина диагонали у него d = 3 м:

Sпов = 2 ⋅ 3² = 2 ⋅ 9 = 18 м² = 180 000 см²

Площадь поверхности куба через объем

Чему равна площадь поверхности куба Sпов, если объём куба Vкуба:

Формула

Пример

Для примера, посчитаем чему равна площадь поверхности куба, если его объём Vкуба = 8 см³:

Sпов = 6 ⋅ 3 √ 8² = 6 ⋅ 3 √ 64 = 6 ⋅ 4 = 24 см²

Источник

Нахождение площади поверхности куба: формула и задачи

В данной публикации мы рассмотрим, как можно найти площадь поверхности куба и разберем примеры решения задач для закрепления материала.

Формула вычисления площади куба

1. Через длину ребра

Площадь (S) поверхности куба равна произведению числа 6 на длину его ребра в квадрате.

S = 6 ⋅ a 2

Данная формула получена следующим образом:

    Куб – это правильная геометрическая фигура, все грани которого являются равными квадратами с длиной стороны a (одновременно является ребром куба).

2. Через длину диагонали грани

Сторона любой грани куба (ребро) может быть рассчитана через длину ее диагонали по формуле: a=d/√ 2 .

Это значит, что вычислить площадь поверхности фигуры можно так:

S = 6 ⋅ (d/√ 2 ) 2

Примеры задач

Задание 1
Найдите площадь поверхности куба, если длина его ребра составляет 12 см.

Решение:
Используем первую формулу выше и получаем:
S = 6 ⋅ (12 см) 2 = 864 см 2 .

Задание 2
Площадь поверхности куба равняется 294 см 2 . Вычислите длину его ребра.

Решение:
Примем ребро куба за a. Из формулы расчета площади следует:

Задание 3
Вычислите площадь поверхности куба, если диагональ его грани равняется 5 см.

Решение:
Воспользуемся формулой, в которой задействована длина диагонали:
S = 6 ⋅ (5 см : √ 2 ) 2 = 75 см 2 .

Источник

Поделиться с друзьями
Объясняем