Как найти объем куба когда известна длина ребра

Нахождение объема куба: формула и задачи

В данной публикации мы рассмотрим, как можно найти объем куба и разберем примеры решения задач для закрепления материала.

Формула вычисления объема куба

1. Через длину ребра

Объем (V) куба равняется произведению его длины на ширину на высоту. Т.к. данные величины у куба равны, следовательно, его объем равен кубу любого ребра.

V = a ⋅ a ⋅ a = a 3

2. Через длину диагонали грани

Как мы знаем, грани куба равны между собой и являются квадратом, сторона которого может быть найдена через длину диагонали по формуле: a=d/√ 2 .

Следовательно, вычислить объем куба можно так:

Примеры задач

Задание 1
Вычислите объем куба, если его ребро равняется 5 см.

Решение:
Подставляем в формулу заданное значение и получаем:
V = 5 см ⋅ 5 см ⋅ 5 см = 125 см 3 .

Задание 2
Известно, что объем куба равен 512 см 3 . Найдите длину его ребра.

Решение:
Пусть ребро куба – это a. Выведем его длину из формулы расчета объема:

Задание 3
Длина диагонали грани куба составляет 12 см. Найдите объем фигуры.

Решение:
Применим формулу, в которой используется диагональ грани:

Источник

Калькулятор для расчета объема куба

Куб или гексаэдр – правильный многогранник, который имеет шесть граней-квадратов. Кубы часто встречаются в реальной жизни, хотя они и не такие популярные, как призмы или параллелепипеды. В любом случае калькулятор объема куба пригодится вам для расчета объема этой распространенной фигуры.

История гексаэдра

Куб относится к классу правильных многогранников, известных человечеству еще с давних времен. Древние цивилизации придавали игральным костям форму куба, а изображения многогранников встречаются на предметах быта, созданных в эпоху неолита. Особое внимание многогранникам, и в частности гексаэдру, уделяли в Древней Греции. Античные греки были неравнодушны к геометрии и числам, выстраивая математические теории создания и функционирования мира. Так, философ Платон использовал образы правильных многогранников для описания природных стихий. Куб в его стройной системе мироздания ассоциировался с землей, так как именно гексаэдр – самый устойчивый правильный многогранник.

Евклид дал полное описание правильных многогранников, в том числе и куба, в «Началах» – своем фундаментальном труде по геометрии. Позднее многогранниками занимался Иоганн Кеплер, который построил модель планетной системы с использованием этих фигур. В кеплеровской модели куб соответствовал Сатурну, вписанному в окружность колец газового гиганта. Гексаэдр, пожалуй, вторая по идеальности фигура после сферы, поэтому она получила важное значение в человеческой культуре.

Читайте также:  Cyberpunk 2077 объем жесткого диска

Геометрия куба

Изучая куб, ученые нашли все его характеристики. Мы давно знаем количество граней (6), ребер (12), вершин (8) или осей симметрии (9). Но с течением времени геометры узнали много нового. Так, в неевклидовой геометрии, которая рассматривает фигуры на сферических или гиперболических поверхностях, прямых углов, следовательно, и привычных нам квадратов и кубов не существует. Одновременно куб – оригинальная фигура, которая существует во всех многомерных пространствах. В отличие от треугольника или параллелограмма, в нульмерном пространстве куб представляет собой точку, в одномерном – простой отрезок, в двухмерном – квадрат, в трехмерном – собственно куб, в четырехмерном – тессеракт, а в пятимерном – пентеракт. Продолжать последовательность можно до десятимерных пространств.

Использование гексаэдров

Кубические фигуры используются не только в архитектуре и строительстве. Куб – эффективная форма для хранения данных, поэтому кубические сетки находят применение в аналитике, программировании, базах данных и прочих научных приложениях. Уникальная форма гексаэдра дает возможность оперировать n-мерными кубами для измерения бесконечно малых объемов или визуализации данных.

Объем куба

Объем любой геометрической фигуры – это количественная характеристика, демонстрирующая, сколько единичных кубов вмещает выбранная фигура. Объем куба, пожалуй, самая простая формула для вычисления этой характеристики. Выглядит она следующим образом:

где a – длина ребра.

Вычислить объем кубической фигуры можно так же при помощи диагонали грани или диагонали самого гексаэдра. Диагональ грани – это диагональ квадрата, которая связана с длиной ребра следующим соотношением:

Диагональ куба связана с длиной ребра похожим соотношением:

Таким образом, рассчитать объем гексаэдра можно оперируя тремя характеристиками фигуры.

Наша программа представляет собой онлайн-калькулятор для вычисления численных характеристик многогранников и тел вращения. Для определения объема достаточно замерить одну характеристику на выбор и ввести это значение в соответствующую ячейку. Программа не только вычислит объем гексаэдра, но и отобразит значения остальных двух неизвестных характеристик.

Естественно, на практике гораздо проще замерить длину ребра куба, однако в школьном курсе стереометрии встречаются задачи на объем куба, в которых даны именно диагонали фигуры. Таким образом, наш калькулятор пригодится в основном школьникам. В быту для вычисления объема достаточно возвести в куб всего один параметр, но если это слишком большое или дробное значение, то для таких вычислений вам и пригодится наша программа.

Рассмотрим пару примеров

К примеру, вы хотите сделать из полимерной глины сплошные игральные кости, которые, естественно, выполняются в форме гексаэдра. Вы хотите сделать пять комплектов, поэтому вам интересно узнать, какой объем глины потребуется для изготовления такой поделки. Стандартный игральный кубик имеет длину ребра 1,6 см. Используя программу, узнаем, что на изготовление одного игрального кубика понадобится V = 4,1 кубических сантиметров полимерной глины. Так как вам необходимо 5 комплектов по 2 кубика в каждом, то общий расход материала составит 41 кубический сантиметр.

Школьная задача

В задаче по стереометрии требуется вычислить объем гексаэдра, диагональ которого равна 5 см. Для решения этой задачи можно использовать формулу, представленную выше, и сначала выразить ребро через диагональ:

Согласно этой формуле, длина ребра куба будет приблизительно равна 5/sqrt(3) = 2,88. Теперь для вычисления объема достаточно возвести полученный результат в третью степень и получить приблизительный результат V = 23,88 кубических сантиметров. Приблизительность вычислений объясняется тем, что корень из трех мы округлили до двух знаков после запятой. Калькулятор использует более точные значения корней, поэтому можно пропустить эти вычисления и просто ввести значение 5 в ячейку D онлайн-калькулятора и получить точный результат V = 24,05.

Читайте также:  Bud двигатель объем масла

Заключение

Гексаэдры занимают в человеческой цивилизации большое значение, поэтому не только школьникам требуется вычислять объем этой фигуры. Используйте наши онлайн-калькуляторы для быстрых и точных вычислений характеристик правильных многогранников и тел вращения.

Источник

Объем куба

Свойства

Куб представляет собой прямоугольный параллелепипед, у которого все ребра равны между собой. Поэтому объем куба вычисляется не просто произведением всех трех его параметров, а возведением ребра куба в третью степень. Поэтому чтобы вычислить ребро куба через объем необходимо извлечь из последнего кубический корень. a=∛V

Площадь грани куба или одной его стороны равна площади квадрата, стороной которого является ребро куба, поэтому кубический корень из объема необходимо возвести во вторую степень. S=∛(V^2 )

Площадь боковой и полной поверхности куба состоят из четырех и шести таких граней соответственно, поэтому их формулы являются аналогией предыдущей с добавлением необходимых коэффициентов. S_(б.п.)=4∛(V^2 ) S_(п.п.)=6∛(V^2 )

Периметр куба равен сумме двенадцати его ребер, равных между собой, поэтому зная, что каждое ребро представлено в виде кубического корня из объема, необходимо умножить его на двенадцать. P=12a=12∛V

Чтобы вычислить диагональ грани куба, нужно вернуться к формуле диагонали квадрата, которым представлены грани. Согласно ей, чтобы найти диагональ, нужно умножить корень из двух на сторону квадрата – ребро куба в данном случае, или кубический корень из объема. d=a√2=∛V √2

Найти диагональ самого куба немного сложнее. Для этого три вершины – диагонали и прилегающего к ней бокового ребра – соединяются в прямоугольный треугольник через диагональ основания, и по теореме Пифагора выводится формула диагонали куба. (рис.2.1) a^2+d^2=D^2 D^2=a^2+2a^2 D^2=3a^2 D=a√3=∛V √3

Чтобы найти радиус сферы, вписанной в куб, через объем, нужно разделить его кубический корень, представляющий собой ребро куба, на два. (рис. 2.2) r=a/2=∛V/2

Радиус сферы, описанной вокруг куба, равен половине диагонали куба, поэтому подставив вместо диагонали необходимую формулу через объем, получим следующее выражение: (рис.2.3) R=D/2=(∛V √3)/2

Источник

Рассчитать объем куба, площадь и диагональ куба

Рассчитать объем куба. Формула объема, площади и диагонали куба.

Рассчитать объем куба, его площадь и диагональ вы можете по длине его стороны (ребра).

Калькулятор расчета объема куба, его площади и диагонали:

Введите длину стороны (ребра) куба. Результат расчета получается в литрах, кубическим сантиметрах и кубических метрах .

Одновременно рассчитываются объем, площадь и диагональ куба.

Формулы расчета объема, площади и диагонали куба:

Формула расчета объема куба:

V = a · a · a = a 3 ;

Формула расчета площади куба:

S = 6 · a · a = 6a 2 ;

Формула расчета диагонали куба:

;

а – длина стороны (ребра) куба,

D – диагональ куба.

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Мировая экономика

Справочники

Востребованные технологии

  • Концепция инновационного развития общественного производства – осуществления Второй индустриализации России на период 2017-2022 гг. (107 130)
  • Экономика Второй индустриализации России (103 531)
  • Программа искусственного интеллекта ЭЛИС (30 114)
  • Этилен (этен), получение, свойства, химические реакции (30 075)
  • Метан, получение, свойства, химические реакции (26 920)
  • Крахмал, свойства, получение и применение (26 569)
  • Природный газ, свойства, химический состав, добыча и применение (25 567)
  • Целлюлоза, свойства, получение и применение (25 110)
  • Пропилен (пропен), получение, свойства, химические реакции (24 001)
  • Прямоугольный треугольник, свойства, признаки и формулы (23 752)
Читайте также:  Как вычислить объем конуса если известен его образующая

Поиск технологий

О чём данный сайт?

Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.

Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.

Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!

Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.

О Второй индустриализации

Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.

Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.

Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.

Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.

Источник

Онлайн калькулятор. Объем куба

Используя этот онлайн калькулятор для вычисления объема куба, вы сможете очень просто и быстро найти объем куба, зная значения длины его стороны.

Воспользовавшись онлайн калькулятором для вычисления объема куба, вы получите детальное решение вашего примера, которое позволит понять алгоритм решения задач и закрепить пройденный материал.

Найти объем куба

Введите длину грани куба:

a =

Ввод данных в калькулятор для вычисления объема куба

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

N.B. В онлайн калькуляте можно использовать величины в однаквых единицах измерения!

Если у вас возниели трудности с преобразованием единиц измерения воспользуйтесь конвертером единиц расстояния и длины, конвертером единиц площади и конвертером единиц объема.

Теория. Объем куба.

Формула для вычисления объема куба

где V — объем куба,
a — длина грани куба.

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Поделиться с друзьями
Объясняем