Как найти минимальное ускорение тела

Содержание
  1. Формулы модуля ускорения для прямолинейного и криволинейного движения. Пример решения задачи
  2. Что такое ускорение?
  3. Движение по прямой и ускорение
  4. Полное ускорение и его компоненты при движении тела по кривой
  5. Угловое ускорение
  6. Пример решения задачи
  7. Величина ускорения: 5 фактов, которые вы должны знать
  8. 1. Как найти величину ускорения из определения ускорения:
  9. 2. Как определить величину ускорения Из второго закона Ньютона:
  10. 3. Как найти величину ускорения по компонентам вектора ускорения:
  11. 4. Как найти величину центростремительного ускорения:
  12. 5. Как найти величину ускорения из уравнений движения:
  13. Автомобиль трогается с места и развивает скорость 54 км / ч за 3 секунды. Найти его ускорение?
  14. Определите ускорения, возникающие при приложении чистой силы 12 Н к объекту массой 3 кг, а затем к объекту массой 6 кг.
  15. Тело движется по оси абсцисс в соответствии с соотношением
  16. , где x в метрах, а t в секундах. Найти ускорение тела при t = 3 с.
  17. Рассчитайте центростремительное ускорение точки на расстоянии 7.50 см от оси ультрацентрифуги, вращающейся при число оборотов в минуту.
  18. Последние посты
  19. О НАС
  20. Как найти ускорение — определение и формулы расчета в физике
  21. Что такое ускорение
  22. Единица измерения
  23. Как рассчитать ускорение: формулы
  24. Для прямолинейного движения
  25. Для равноускоренного движения
  26. Для равнозамедленного движения
  27. Нахождение ускорения через массу и силу
  28. Мгновенное ускорение
  29. Максимальное ускорение
  30. Среднее ускорение
  31. Проекция ускорения

Формулы модуля ускорения для прямолинейного и криволинейного движения. Пример решения задачи

В физике существует несколько видов ускорения, которые используются для описания того или иного типа механического перемещения тел в пространстве. Все эти виды являются векторными величинами. В данной статье не будем рассматривать вопрос, куда направлено ускорение, а сосредоточим свое внимание на формулах модуля ускорения.

Что такое ускорение?

Максимально полное определение этой кинематической характеристики можно привести следующее: ускорение — это величина, показывающая быстроту изменения скорости во времени. Речь идет об изменении как модуля, так и направления. Математически ускорение вычисляют так:

Оно называется мгновенным, то есть справедливым для конкретного момента времени t. Чтобы найти среднее значение модуля ускорения, формулу такую необходимо использовать:

Где v2 и v1 — скорости в моменты времени t2 и t1 соответственно.

Единицами измерения изучаемой физической величины являются метры в квадратную секунду (м/с 2 ). Многих может смутить возведение во вторую степень единиц времени, тем не менее, понять смысл единицы м/с 2 несложно, если ее представить в виде [м/с]/с. Последняя запись означает изменение скорости на одну единицу за одну единицу времени.

Движение по прямой и ускорение

Самой простой траекторией для перемещения тел в пространстве является прямая линия. Если скорость при движении по такой траектории не изменяется, то говорить об ускорении не приходится, поскольку оно будет равно нулю.

В технике широко распространено прямолинейное равноускоренное (равнозамедленное) движение. Например, при старте автомобиля или при его торможении мы имеем именно этот вид движения. Для его математического описания пользуются следующими равенствами:

Здесь v0 — некоторая начальная скорость тела, которая может быть также равна нулю, l — пройденный телом путь к моменту времени t. Знак + говорит об ускорении тела, знак — — о его торможении. Важно запомнить, что время t при использовании записанных формул начинает отсчитываться от момента появления у тела постоянного ускорения a. С учетом записанных равенств, формулы модуля ускорения тела принимают вид:

Как правило, если тело ускоряется, то говорят о положительном ускорении, если же оно замедляет свое движение, то говорят об отрицательной величине a. Нетрудно проверить, что обе формулы приводят к одной и той же единице измерения ускорения (м/с 2 ).

Читайте также:  Газель некст цельнометаллический объем двигателя

Полное ускорение и его компоненты при движении тела по кривой

В случае перемещения тела по криволинейной траектории, величину a удобно представить в виде двух взаимно перпендикулярных составляющих. Они называются тангенциальным at и нормальным an ускорениями. Для такого случая формула модуля ускорения точки принимает вид:

Тангенциальную компоненту следует рассчитывать через производную функции v(t) по времени. Нормальная же компонента определяется не изменением модуля скорости, а самой ее величиной. Для ее расчета пользуются таким выражением:

Здесь r — радиус кривизны траектории, который в случае вращения по окружности совпадает с радиусом последней.

Для полноты информации отметим, что криволинейность траектории перемещения тела является достаточным признаком присутствия ненулевой нормальной составляющей ускорения. При этом величина at может быть равна нулю, что является справедливым для равномерного вращения тел.

Угловое ускорение

Как было отмечено во введении, существуют несколько видов ускорения. Одним из них является угловая кинематическая величина. Обозначим ее α. По аналогии с линейным ускорением, формула модуля ускорения углового имеет вид:

Где греческой буквой ω (омега) обозначена скорость угловая, единицами измерения которой являются радианы в секунду. Величина α показывает, как быстро тело увеличивает или замедляет скорость своего вращения.

Ускорение угловое можно связать с линейной величиной. Делается это с помощью такой формулы:

Важно понимать, что угловое ускорение является удобным способом представления тангенциальной составляющей полного ускорения в случае вращательного движения. Удобство здесь заключается в независимости величины α от расстояния до оси вращения r. В свою очередь, компонента at линейно возрастает при увеличении радиуса кривизны r.

Пример решения задачи

Известно, что тело вращается по окружности, радиус которой составляет 0,2 метра. Вращение является ускоренным, при этом скорость изменяется во времени по следующему закону:

Необходимо определить тангенциальное, нормальное, полное и угловое ускорения в момент времени 3 секунды.

Начнем решать эту задачу по порядку. Тангенциальная компонента определяется через производную скорости. Имеем:

Отметим, что это очень большое ускорение по сравнению с ускорением свободного падения (9,81 м/с 2 ).

Нормальная компонента вычисляется так:

an = v 2 /r = 1/r*(2 + 3*t 2 + 2*t 3 ) 2 = 1/0,2*(2+27+54) 2 = 34445 м/c 2 .

Теперь можно рассчитать полное ускорение. Оно будет равно:

То есть, полное ускорение практически полностью образовано нормальной компонентой.

Наконец, ускорение угловое определяется по формуле:

Полученное значение соответствует увеличению скорости угловой приблизительно на 60 оборотов за каждую секунду.

Источник

Величина ускорения: 5 фактов, которые вы должны знать

Ускорение скорость, с которой скорость изменения. Поскольку скорость является векторной величиной, ускорение также является векторной величиной. В результате требуется не только направление, но и величина. Итак, в этой статье мы рассмотрим, как определить величину ускорения.

Мы используем формулы и соотношения для расчета величины. Мы можем представить величину в единицах. Поскольку ускорение определяется как изменение скорости во времени, единицей СИ для него является . На ускорение влияют различные факторы, такие как скорость, время, сила и т. Д. Мы рассмотрим несколько различных методов оценки величины ускорения. Давайте читать дальше.

1. Как найти величину ускорения из определения ускорения:

Как мы все знаем, ускорение относится к скорости изменения скорости. Если начальная скорость тела равна vi, а его конечная скорость равна vf, ускорение можно вычислить, разделив изменение скорости на временной интервал Δt:

(Здесь величина вектора показана жирным шрифтом, а вертикальные линии обозначают величину вектора или, можно сказать, абсолютное значение вектора, которое всегда положительно.)

Используя скорость и время, приведенное выше уравнение можно использовать для определения величины ускорения.

2. Как определить величину ускорения Из второго закона Ньютона:

Второй закон Ньютона гласит, что сила получается умножением ускорения на массу тела. Итак, как можно определить величину ускорения?

Читайте также:  Avantis hunter 200 объем масла

Итак, согласно второму закону Ньютона, сила, действующая на тело, пропорциональна его ускорению, тогда как масса обратно пропорциональна ускорению. Переведем эти утверждения в формулу величины ускорения:

3. Как найти величину ускорения по компонентам вектора ускорения:

Как мы все знаем, ускорение — это векторная величина. Чтобы получить это количество, сложите компоненты ускорения. Здесь можно использовать простое правило сложения векторов. Если задействованы две компоненты вектора, мы можем написать:

В декартовой плоскости мы можем использовать координаты X и Y. Как в этих обстоятельствах определить величину ускорения? В декартовой системе координат компоненты X и Y перпендикулярны друг другу. Величину ускорения можно вычислить, возведя значения в квадрат и затем вычислив квадратный корень из суммы.

В результате уравнение выглядит следующим образом:

Формула величины ускорения в трехмерном пространстве:

4. Как найти величину центростремительного ускорения:

Из-за непрерывного изменения направления при круговом движении скорость изменяется, что приводит к ускорению. Ускорение направлено в направлении центра круга. Возведение в квадрат скорости тела v и деление ее на расстояние тела от центра круга дает величину центростремительного ускорения. Таким образом, центростремительное ускорение:

5. Как найти величину ускорения из уравнений движения:

Уравнения движения — это, по сути, уравнения, которые объясняют движение любой физической системы и демонстрируют взаимосвязь между перемещением объекта, скоростью, ускорением и временем.

Когда величина ускорения постоянна, кинематическое уравнение движения в одном измерении также используется для вычисления величины ускорения.

Ниже приведены уравнения движения:

Когда мы рассматриваем ускорение в уравнении, мы получаем следующее:

    (Это то же самое, что мы получили из определения ускорения.)

Вот как мы можем определить величину ускорения.

Решенные примеры определения величины ускорения:

1 задачи:

Автомобиль трогается с места и развивает скорость 54 км / ч за 3 секунды. Найти его ускорение?

Решение: Автомобиль заводится с отдыха. Таким образом, начальная скорость автомобиля

Таким образом, Ускорение : a = (Vf — Vi) / Δt

2 задачи:

Определите ускорения, возникающие при приложении чистой силы 12 Н к объекту массой 3 кг, а затем к объекту массой 6 кг.

Решение: Приложенная сила F = 12 Н

Масса объекта m1 = 3 кг

Ускорение объекта массой 3 кг

Ускорение объекта массой 6 кг

Поскольку масса и ускорение обратно пропорциональны, мы можем наблюдать, что по мере увеличения массы ускорение уменьшается.

3 задачи:

Тело движется по оси абсцисс в соответствии с соотношением

, где x в метрах, а t в секундах. Найти ускорение тела при t = 3 с.

Решение: Вот :

Скорость v = dX / dt

Ускорение : a = dv / dt

Как мы видим, для этого движения ускорение не зависит от времени; ускорение будет постоянным на протяжении всего движения, а величина ускорения будет .

4 задачи:

Рассчитайте центростремительное ускорение точки на расстоянии 7.50 см от оси ультрацентрифуги, вращающейся при число оборотов в минуту.

Решение: Здесь нам даны:

Расстояние от центра r = 7.5 см

Таким образом, центростремительное ускорение:

Я Альпа Раджаи, получил степень магистра естественных наук со специализацией в области физики. Я с большим энтузиазмом пишу о своем понимании передовой науки. Уверяю, что мои слова и методы помогут читателям разобраться в своих сомнениях и прояснить, что они ищут. Помимо физики, я обученный танцор катхак, а также иногда пишу свои чувства в форме стихов. Я постоянно обновляю себя в физике, и все, что я понимаю, я упрощаю и придерживаюсь сути, чтобы это было ясно донесено до читателей. Вы также можете связаться со мной по адресу: https://www.linkedin.com/in/alpa-rajai-858077202/

Последние посты

Гидроксид калия или едкий калий является неорганическим компонентом. Его молярная масса составляет 56.11 г/моль. Давайте резюмируем структуру КОН Льюиса и все факты в деталях. КОН представляет собой простой гидроксид щелочного металла.

Читайте также:  Hyundai accent заправочные объемы

Слово «еще» в основном служит в значении «до сих пор» или «тем не менее» в предложении. Проверим употребление слова «пока» в значении «союз». Слово «пока» можно обозначить как «координационное.

О НАС

Мы являемся группой профессионалов отрасли из различных областей образования, таких как наука, инженерия, английская литература, и создаем универсальное образовательное решение, основанное на знаниях.

Источник

Как найти ускорение — определение и формулы расчета в физике

Что такое ускорение

Ускорение \(\overrightarrow а\) — векторная величина в физике, характеризующая быстроту изменения скорости тела.

Ускорение является векторной величиной, показывающей, на сколько изменяется вектор скорости тела при его движении за единицу времени.

Единица измерения

В СИ (системе интернациональной) ускорение измеряется: \( \begina\end=\frac м<с^2>\)

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Как рассчитать ускорение: формулы

Для прямолинейного движения

Прямолинейное движение — механическое движение, при котором траектория тела — прямая линия.

В этом случае ускорение находится по следующим формулам:

Где \(a\) — достигнутое ускорение тела, \(S\) — пройденный путь (расстояние), \(t\) — затраченное время.

Время отсчитывается от начала движения тела.

При прямолинейном равномерном движении ускорение по модулю равняется нулю.

Для равноускоренного движения

Равноускоренное движение — прямолинейное движение с постоянным положительным ускорением (разгон).

При таком виде движения ускорение определяется по формуле: \(a\;=\;\fract\) , где \(V_0\) и \(V\) начальная и конечная скорости соответственно, \(a\) — достигнутое ускорение тела, \(t\) — затраченное время.

Для равнозамедленного движения

Равнозамедленное движение — прямолинейное движение с постоянным отрицательным ускорением (замедление).

При таком виде движения ускорение находим по формуле: \(a\;=-\;\fract\) , где V0 и V начальная и конечная скорости соответственно, a — достигнутое ускорение тела, t — затраченное время.

Нахождение ускорения через массу и силу

Принцип инерции Галилея:

Если не действовать на тело, то его скорость не будет меняться.

Система отсчета (СО) — система координат, точка отсчета и указание начала отсчета времени.

Инерциальная система отсчета (ИСО) — это СО, в которой наблюдается движение по инерции (соблюдается принцип инерции).

II закон Ньютона:

В инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.

Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени — это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Другими словами — это ускорение, которое развивает тело за максимально короткий отрезок времени.

Выражается по формуле:

Максимальное ускорение

\(a_=\omega v_,\) где \(a_\) — максимальное ускорение, \(\omega\) — круговая (угловая, циклическая) частота, \(v_\) — максимальная скорость.

Среднее ускорение

Среднее ускорение — это отношение изменения скорости к промежутку времени, за который это изменение произошло.

\(\overrightarrow>=\frac<\triangle\overrightarrow V><\triangle t>\) , где \(\overrightarrow>\) — среднее ускорение, \(\triangle\overrightarrow V\) — изменение скорости, \( \triangle t\) — изменение времени.

Проекция ускорения

Определение проекции ускорения на ось \(х\) :

\(a_x=\frac>t\) , где где \(a_x\) — проекция ускорения на ось \(х\) , \(V_x\) проекция текущей скорости на ось \(х\) , \(V_<0x>\) проекция начальной скорости на ось \(х\) , \(t\) или \(\triangle t\) — промежуток времени, за который произошло изменение проекции скорости.

Источник

Поделиться с друзьями
Строю.ру
Adblock
detector