- Диаметр и высота цилиндра
- Свойства
- Егэ-тренер. Подготовка 2019-2020 Тренинги в прямом эфире для учителей и учеников
- Высота и диагональ цилиндра
- Свойства
- Калькулятор для цилиндра
- Калькулятор для цилиндра: комментарий
- Прямой круговой цилиндр
- Формулы для прямого кругового цилиндра:
- Скошенный цилиндр
- Высота и площадь основания цилиндра
- Свойства
Диаметр и высота цилиндра
Свойства
Через диаметр цилиндра можно рассчитать его радиус и периметр основания цилиндра. Радиус будет равен половине диаметра, а периметр – его произведению на число π. r=D/2 P=πD
Зная диаметр и высоту цилиндра, можно узнать площадь, объем, диагональ цилиндра и остальные параметры. Площадь боковой поверхности цилиндра представляет собой площадь прямоугольника, сторонами которого являются периметр основания цилиндра и его высота. Чтобы затем найти площадь полной поверхности цилиндра через диаметр и высоту, нужно к площади боковой поверхности добавить площадь верхнего и нижнего оснований, каждое из которых равно произведению числа π на четверть квадрата диаметра. S_(б.п.)=hP=πDh S_(п.п.)=S_(б.п.)+2S_(осн.)=πDh+(πD^2)/2=πD/2(2h+D) P=πD
Объем цилиндра представляет собой площадь его основания, умноженную на высоту. Чтобы найти объем цилиндра через диаметр и высоту, нужно умножить квадрат диаметра на четверть числа π и на высоту. V=(πD^2 h)/4 P=πD
Диагональ цилиндра находится из прямоугольного треугольника, в котором она является гипотенузой, а катеты представлены высотой и диаметром цилиндра. По теореме Пифагора диагональ цилиндра через высоту и диаметр цилиндра равна квадратному корню из суммы их квадратов. (рис. 25.1) d=√(h^2+D^2 ) P=πD
Чтобы найти радиус сферы вписанной в цилиндр, если его диаметр равен высоте, нужно разделить диаметр цилиндра либо высоту на два, так как радиус вписанной сферы равен радиусу цилиндра. (рис.25.2) r_1=h/2=D/2 P=πD
Радиус сферы, описанной вокруг цилиндра, при соблюдении тех же условий (равенство диаметра цилиндра и его высоты) равен половине диагонали цилиндра.(рис.25.3) R=d/2=√(h^2+D^2 )/2
Источник
Егэ-тренер. Подготовка 2019-2020 Тренинги в прямом эфире для учителей и учеников
Курс-тренинг Разбираем вариант 97 (1-14) —> Полный цикл видеоуроков по задачам 1-14 —> Полная В-подготовка (задачи 1-14) Полный цикл видеоуроков по задачам 1-14 При каком условии верно равенство 2990 + 1990 + 990 = 3900? —> Новые курсы: «EGE-мастер», «Достойный балл», «Ларинские варианты», «Раз-в-неделю», «Всё включено» —> Постоянно работают курсы для выпускников, учителей и репетиторов
12(B13). Найти диаметр основания цилиндра, если дана боковая поверхность (вар. 49)
Площадь боковой поверхности цилиндра равна 56π, а высота равна 7. Найдите диаметр основания.
Что представляет из себя боковая поверхность цилиндра? Разрежем его мысленно по образующей. При этом получим обыкновенный прямоугольник. Одно из его измерений — высота цилиндра. Второе измерение — длина окружности основания цилиндра. Она равна 2π·R = π·(2R) = π·D.
На рисунке изображена полная развёртка цилиндра, но нас интересует только прямоугольник. Площадь прямоугольника (боковая поверхность) равна (π·D)·Н. По условию она равна 56π. Получаем (π·D)·Н = 56π. Отсюда D·Н = 56. Учтём теперь, что по условию высота равна 7. D·7 = 56. Отсюда находим диаметр D = 8. Ответ: 8 Можно поступить и так. В формулу боковой поверхности цилиндра Sбок. = 2π·R·H подставить площадь 56π и высоту 7, получим 56π = 2πR·7, 56 = 2R·7, 8 = 2R = D.
Автор: Ольга Себедаш Просмотров: 46704
Курс-тренинг Разбираем вариант 97 (1-14) —> Полный цикл видеоуроков по задачам 1-14 —> Полная В-подготовка (задачи 1-14) Полный цикл видеоуроков по задачам 1-14 При каком условии верно равенство 2990 + 1990 + 990 = 3900? —> Новые курсы: «EGE-мастер», «Достойный балл», «Ларинские варианты», «Раз-в-неделю», «Всё включено» —> Постоянно работают курсы для выпускников, учителей и репетиторов
Комментарии к этой задаче:
Комментарий добавил(а): Артур
Дата: 2014-06-03
А общее формула нахождение диаметра цилиндра? Она имеет лишь такое произведение? Или есть иное?
Источник
Высота и диагональ цилиндра
Свойства
Зная высоту и диагональ цилиндра, найти диаметр окружности в его основании не составляет труда. Для этого необходимо провести диагональ таким образом, чтобы получить с вышеуказанными параметрами прямоугольный треугольник, и далее вычислить неизвестное звено по теореме Пифагора. (рис.25.1) D=√(d^2-h^2 )
Зная диаметр, можно подставив полученное выражение вместо него в следующие формулы, найти радиус и периметр окружности в основании через диагональ и высоту цилиндра. r=D/2=√(d^2-h^2 )/2 P=πD=π√(d^2-h^2 )
Площадь боковой и полной поверхности вычисляются с непосредственным участием радиуса цилиндра или соответствующего ему выражения. Поэтому чтобы найти площади цилиндра через высоту и диагональ, нужно совершить следующие преобразования. S_(б.п.)=hP=2πrh=2π √(d^2-h^2 )/2 h=πh√(d^2-h^2 ) S_(п.п.)=S_(б.п.)+2S_(осн.)=πh√(d^2-h^2 )+π(d^2-h^2 )
Объем цилиндра вычисляется как произведение площади его основания на высоту. Чтобы найти объем цилиндра через высоту и диагональ цилиндра, нужно вместо площади основания подставить произведение числа π на разность квадратов диагонали и высоты. V=πh(d^2-h^2 )
Преследуя цель вычислить радиус вписанной или описанной окружности цилиндра через диагональ и высоту, необходимо помнить о том, что в цилиндр можно вписать окружность, только если радиус цилиндра равен его высоте. Поэтому радиус вписанной окружности будет равен половине высоты, а радиус описанной окружности – половине диагонали. (рис. 25.2,25.3) r_1=h/2 R=d/2
Источник
Калькулятор для цилиндра
Онлайн калькулятор для цилиндра позволяет по известным данным вычислить:
- объем цилиндра,
- площадь основания, площадь боковой поверхности и площадь полной поверхности цилиндра,
- элементы: радиус, диаметр и высоту.
Калькулятор для цилиндра: комментарий
Цилиндр — геометрическое тело, ограниченное цилиндрической поверхностью (называемой боковой поверхностью цилиндра) и не более чем двумя поверхностями (основаниями цилиндра).
Обозначения для цилиндра:
R – радиус, D – диаметр,
V – объем,
Sо – площадь основания, Sб – площадь боковой поверхности, S – площадь полной поверхности,
h – высота прямого кругового цилиндра (h1 и h2 — минимальная и максимальная высота)
π – число Пи которое всегда примерно равно 3,14.
Прямой круговой цилиндр
Круговым называется цилиндр, если его направляющая является окружностью. Прямым называется цилиндр, если его образующая перпендикулярна основаниям.
Формулы для прямого кругового цилиндра:
Найти объем цилиндра , если известны:
- радиус и высота цилиндра: V=πR 2 h
- диаметр и высота цилиндра: V=πD 2 /4h
- площадь и высота цилиндра: V=Sоh
Площадь(Sб) боковой поверхности прямого кругового цилиндра
Так как боковая поверхность представляет собой прямоугольник, то площадь боковой поверхности цилиндра определяется по формуле: Sб=2πR⋅h
Площадь(Sо) основания цилиндра
Основание цилиндра —круг, поэтому площадь одного основания находится по формуле площади круга: Sо=πR 2 .
Площадь(S) полной поверхности прямого кругового цилиндра
Площадь полной поверхности цилиндра определяется по формуле: S=2πRh+2πR 2 =2πR(h+R)
Формулы нахождения радиуса и диаметра по:
- высоте и объему: R=√(V/πh) , D=2*√(V/πh)
- площади боковой поверхности и высоте: R=Sб/2πh , D=2*Sб/2πh
- площади основания и высоте: R=√(Sо/π) , R=2*√(Sо/π)
Формулы нахождения высоты по:
- радиусу и объему: h=V/πR 2
- площади боковой поверхности и радиусу: h=Sб/2πR
- площади полной поверхности и радиусу: h=S/2πR-R
Скошенный цилиндр
Прямой круговой цилиндр со скошенным основанием (скошенный цилиндр) определяется радиусом основания R, минимальной высотой h1 и максимальной высотой h2.
Источник
Высота и площадь основания цилиндра
Свойства
Через площадь основания цилиндра можно найти диаметр цилиндра и радиус. Поскольку площадь окружности, которая представляет собой основание цилиндра, равна произведению квадрата радиуса или четверти квадрата диаметра на число π, то эти два параметра легко найти, составив отношение из нужного количества площадей к числу π, и извлечь затем из него квадратный корень. r=√(S/π) D=√(4S/π)=2√(S/π)
Также зная площадь основания цилиндра и высоту, можно сразу найти объем цилиндра, перемножив эти два показателя. V=S_(осн.) h
Периметр окружности, лежащей в основании цилиндра, через площадь основания равен двум квадратным корням из произведения площади основания на число π. P=2√Sπ
Площадь боковой поверхности цилиндра, зная высоту и площадь основания, можно найти, выразив радиус через площадь основания и умножив его на удвоенное число π и высоту, а площадь полной поверхности будет представлена как сумма этого значения и двух заданных площадей основания. S_(б.п.)=2h√Sπ S_(п.п.)=S_(б.п.)+2S_(осн.)=2h√Sπ++2S_(осн.)
Чтобы найти диагональ цилиндра через площадь основания и высоту, также понадобится извлечь из площади основания радиус, и затем подставив его в теорему Пифагора, найти диагональ, как гипотенузу полученного прямоугольного треугольника. (рис.25.1) d=√(D^2+h^2 )=√(4S/π+h^2 )
Радиусы вписанной и описанной вокруг цилиндра сфер равны радиусу цилиндра и половине диагонали соответственно. (рис. 25.2,25.3) r_1=r=√(S/π) R=d/2=√(4S/π+h^2 )/2
Источник