Как найди объем фигуры

Содержание
  1. Формулы объема геометрических фигур
  2. Объем куба
  3. Объем призмы
  4. Объем параллелепипеда
  5. Объем прямоугольного параллелепипеда
  6. Объем пирамиды
  7. Объем правильного тетраэдра
  8. Объем цилиндра
  9. Объем конуса
  10. Объем шара
  11. Все формулы объемов геометрических тел
  12. 1. Расчет объема куба
  13. 2. Найти по формуле, объем прямоугольного параллелепипеда
  14. 3. Формула для вычисления объема шара, сферы
  15. 4. Как вычислить объем цилиндра ?
  16. 5. Как найти объем конуса ?
  17. 7. Формула объема усеченного конуса
  18. 8. Объем правильного тетраэдра
  19. 9. Объем правильной четырехугольной пирамиды
  20. 10. Объем правильной треугольной пирамиды
  21. 11. Найти объем правильной пирамиды
  22. Формулы вычисления объема всех геометрических фигур
  23. Все формулы объема геометрических тел
  24. Объем куба
  25. Объем призмы
  26. Объем параллелепипеда
  27. Объем пирамиды
  28. Объем усеченной пирамиды
  29. Объем цилиндра
  30. Объем правильной треугольной пирамиды
  31. Объем конуса
  32. Объем усеченного конуса
  33. Объем тетраэдра
  34. Объем шара
  35. Объем шарового сегмента и сектора
  36. Объем прямоугольного параллелепипеда
  37. Формула объема.

Формулы объема геометрических фигур

Объем куба

Объем куба равен кубу длины его грани.

Формула объема куба:

Объем призмы

Объем призмы равен произведению площади основания призмы, на высоту.

Формула объема призмы:

Объем параллелепипеда

Объем параллелепипеда равен произведению площади основания на высоту.

Формула объема параллелепипеда:

Объем прямоугольного параллелепипеда

Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

Формула объема прямоугольного параллелепипеда:

Объем пирамиды

Объем пирамиды равен трети от произведения площади ее основания на высоту.

Формула объема пирамиды:

Объем правильного тетраэдра

Формула объема правильного тетраэдра:

Объем цилиндра

Объем цилиндра равен произведению площади его основания на высоту.

Формулы объема цилиндра:

Объем конуса

Объем конуса равен трети от произведению площади его основания на высоту.

Формулы объема конуса:

Объем шара

Объем шара равен четырем третьим от его радиуса в кубе помноженного на число пи.

Формула объема шара:

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Все формулы объемов геометрических тел

1. Расчет объема куба

a — сторона куба

Формула объема куба, (V):

2. Найти по формуле, объем прямоугольного параллелепипеда

a , b , c — стороны параллелепипеда

Еще иногда сторону параллелепипеда, называют ребром.

Формула объема параллелепипеда, (V):

3. Формула для вычисления объема шара, сферы

R радиус шара

Читайте также:  Gle купе объем багажника

По формуле, если дан радиус, можно найти объема шара, (V):

4. Как вычислить объем цилиндра ?

h — высота цилиндра

r — радиус основания

По формуле найти объема цилиндра, есди известны — его радиус основания и высота, (V):

5. Как найти объем конуса ?

R — радиус основания

H — высота конуса

Формула объема конуса, если известны радиус и высота (V):

7. Формула объема усеченного конуса

r — радиус верхнего основания

R — радиус нижнего основания

h — высота конуса

Формула объема усеченного конуса, если известны — радиус нижнего основания, радиус верхнего основания и высота конуса (V ):

8. Объем правильного тетраэдра

Правильный тетраэдр — пирамида у которой все грани, равносторонние треугольники.

а — ребро тетраэдра

Формула, для расчета объема правильного тетраэдра (V):

9. Объем правильной четырехугольной пирамиды

Пирамида, у которой основание квадрат и грани равные, равнобедренные треугольники, называется правильной четырехугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула для вычисления объема правильной четырехугольной пирамиды, (V):

10. Объем правильной треугольной пирамиды

Пирамида, у которой основание равносторонний треугольник и грани равные, равнобедренные треугольники, называется правильной треугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула объема правильной треугольной пирамиды, если даны — высота и сторона основания (V):

11. Найти объем правильной пирамиды

Пирамида в основании, которой лежит правильный многоугольник и грани равные треугольники, называется правильной.

h — высота пирамиды

a — сторона основания пирамиды

n — количество сторон многоугольника в основании

Формула объема правильной пирамиды, зная высоту, сторону основания и количество этих сторон (V):

Источник

Формулы вычисления объема всех геометрических фигур

Объём — это аддитивная функция от множества (мера), характеризующая вместимость области пространства, которую оно занимает. Изначально возникло и применялось без строгого определения в отношении тел трёхмерного евклидова пространства. Первые точные определения были даны Пеано (1887) и Жорданом (1892). Впоследствии понятие было обобщено Лебегом на более широкий класс множеств.

Для определения объёма существует несколько существенно различных подходов, которые дополняют друг друга и согласованы по конечному результату на «хороших множествах». Обычно под понятием объёма понимается мера Жордана, но иногда мера Лебега. Для римановых многообразий понятие объёма вводится аналогично понятию площади поверхности.

Все формулы объема геометрических тел

Объем куба

Объем куба равен кубу длины его грани.

Формула объема куба:

Читайте также:  Как найти объем нового куба

V — объем куба,
a — длина грани куба.

Объем призмы

Объем призмы равен произведению площади основания призмы, на высоту.

Формула объема призмы:

V- объем призмы,
So — площадь основания призмы,
h — высота призмы.

Объем параллелепипеда

Объем параллелепипеда равен произведению площади основания на высоту.

Формула объема параллелепипеда:

V- объем параллелепипеда,
So — площадь основания,
h — длина высоты.

Объем пирамиды

Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).

V — объем пирамиды,
So — площадь основания пирамиды,
h — длина высоты пирамиды.

Объем усеченной пирамиды

Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1(abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.

Формула объема усеченной пирамиды:

S1 — площадь верхнего основания усеченной пирамиды,
S2 — площадь нижнего основания усеченной пирамиды,
h — высота усеченной пирамиды.

Объем цилиндра

Объем цилиндра равен произведению площади его основания на высоту.

V — объем цилиндра,
So — площадь основания цилиндра,
R — радиус цилиндра,
h — высота цилиндра,
π = 3.141592

Объем правильной треугольной пирамиды

Формула объема правильной треугольной пирамиды:

V — объем пирамиды;
h — высота пирамиды;
a — сторона основания пирамиды.

Объем конуса

Объем круглого конуса равен трети произведения площади основания S на высоту H.

V — объем конуса;
R — радиус основания;
H — высота конуса;
I — длина образующей;
S — площадь боковой поверхности конуса.

Объем усеченного конуса

Объем усеченного конуса равен разности объемов двух полных конусов.

Формула объема усеченного конуса:

V — объем усеченного конуса;
H — высота усеченного конуса;
R и R 2 — радиусы нижнего и верхнего оснований.

Объем тетраэдра

Объем тетраэдра рассчитывается по классической формуле объема пирамиды. В нее нужно подставить высоту тетраэдра и площадь правильного (равностороннего) треугольника.

V — объем тетраэдра;
a — ребро тетраэдра.

Объем шара

Объем шара равен четырем третьим от его радиуса в кубе перемноженного на число пи.

V — объем шара;
R — радиус шара;
S — площадь сферы.

Объем шарового сегмента и сектора

Шаровый сегмент — это часть шара отсеченная плоскостью. В данном примере, плоскостью ABCD.

Формула объема шарового сегмента:

R — радиус шара
H — высота сегмента
π ≈ 3,14

Формула объема шарового сектора:

h — высота сегмента
R — радиус шара
π ≈ 3,14

Объем прямоугольного параллелепипеда

Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

Формула объема прямоугольного параллелепипеда:

Читайте также:  Freebsd объем жесткого диска

V — объем прямоугольного параллелепипеда,
a — длина,
b — ширина,
h — высота.

Источник

Формула объема.

Формула объема необходима для вычисления параметров и характеристик геометрической фигуры.

Объем фигуры — это количественная характеристика пространства, занимаемого телом или веществом. В простейших случаях объём измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины. Объём тела или вместимость сосуда определяется его формой и линейными размерами.

Объемы геометрических фигур.

Параллелепипед.

Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.

Цилиндр.

Объем цилиндра равен произведению площади основания на высоту.

Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

Пирамида.

Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).

Правильная пирамида — это пирамида, в основании, которой лежит правильный многоугольник, а высота проходит через центр вписанной окружности в основание.

Правильная треугольная пирамида — это пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.

Правильная четырехугольная пирамида — это пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.

Тетраэдр — это пирамида, у которой все грани — равносторонние треугольники.

Усеченная пирамида.

Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1(abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.

Куб.

Вычислить объем куба легко – нужно перемножить длину, ширину и высоту. Так как у куба длина равна ширине и равна высоте, то объем куба равен s 3 .

Конус — это тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность.

Усеченный конус получится, если в конусе провести сечение, параллельное основанию.

V = 1/3 πh (R 2 + Rr + r 2 )

Шар.

Объем шара в полтора раза меньше, чем объем описанного вокруг него цилиндра.

Призма.

Объем призмы равен произведению площади основания призмы, на высоту.

Сектор шара.

Объем шарового сектора равен объему пирамиды, основание которой имеет ту же площадь, что и вырезаемая сектором часть шаровой поверхности, а высота равна радиусу шара.

Шаровой слой — это часть шара, заключенная между двумя секущими параллельными плоскостями.

Сегмент шара — это часть шара, осекаемая от него какой-нибудь плоскостью, называется шаровым или сферическим сегментом

Источник

Поделиться с друзьями
Объясняем
Фигура Формула Чертеж