Как искать объем призмы

Нахождение объема призмы: формула и задачи

В данной публикации мы рассмотрим, как можно найти объем призмы и разберем примеры решения задач для закрепления материала.

Формула вычисления объема призмы

Объем призмы равняется произведению площади ее основания на высоту.

V = Sосн ⋅ h

  • Sосн – площадь основания, т.е. в нашем случае – четырехугольника ABCD или EFGH (равны между собой);
  • h – высота призмы.

Приведенная выше формула подходит для следующих видов призм:

  • прямой – боковые ребра перпендикулярны основанию;
  • правильной – прямая призма, основанием которой является правильный многоугольник;
  • наклонной – боковые ребра расположены под углом по отношению к основанию.

Примеры задач

Задание 1
Найдите объем призмы, если известно, что площадь ее основания равна 14 см 2 , а высота – 6 см.

Решение:
Подставляем в формулу известные нам значения и получаем:
V = 14 см 2 ⋅ 6 см = 84 см 3 .

Задание 2
Объем призмы равняется 106 см 3 . Найдите ее высоту, если известно, что площадь основания составляет 10 см 2 .

Решение:
Из формулы расчета объема следует, что высота равняется объему, разделенному на площадь основания:
h = V / Sосн = 106 см 3 / 10 см 2 = 10,6 см.

Источник

Геометрические фигуры. Призма. Объем призмы.

Призма — многогранник, 2 грани это конгруэнтные (равные) многоугольники, которые лежат в

параллельных плоскостях, а оставшиеся грани — параллелограммы, имеющие общие стороны с

этими многоугольниками. Либо (что тоже самое) — это многогранник, основаниями которого

являются равные многоугольники, а боковыми гранями — параллелограммы.

Призма является разновидностью цилиндра.

Элементы призмы.

конгруэнтными многоугольниками, которые лежат

в плоскостях, параллельных друг другу.

Боковые грани (ABLK, BCML, CDNM, DEPN, EAKP) – каждая

из граней, не считая оснований. Все боковые грани – это

Боковая поверхность – сумма боковых граней.

Полная поверхность – сумма основания и боковой

Боковые ребра (AK, BL, CM, DN, EP) – общие стороны

Высота (KR) – отрезок, который соединяет плоскости, в них лежат основания призмы. Он

перпендикулярен этим плоскостям.

Диагональ (BP) – отрезок, который соединяет 2 вершины призмы, которые не принадлежат одной

Диагональная плоскость – плоскость, которая проходит через боковое ребро призмы, а также

Диагональное сечение (EBLP) – пересечение призмы и диагональной плоскости. В сечении получается

Перпендикулярное (ортогональное) сечение – пересечение призмы и плоскости, перпендикулярной

боковому ребру призмы.

Свойства призмы.

  • Основания призмы – это равные многоугольники.
  • Боковые грани призмы имеют вид параллелограмма.
  • Боковые ребра призмы параллельные и равны.
  • Площадь полной поверхности призмы = сумме площади её боковой поверхности и двойной

где P — периметр перпендикулярного сечения, l — длина бокового ребра.

  • Площадь боковой поверхности прямой призмы:

где P — периметр основания призмы, h — высота призмы.

  • Перпендикулярное сечение перпендикулярно всем боковым рёбрам призмы.
  • Углы перпендикулярного сечения — это линейные углы двугранных углов при соответствующих
  • Перпендикулярное сечение перпендикулярно всем боковым граням.
  • Объем призмы равен произведению площади основания призмы, на высоту.

Формула объема призмы:

где V — объем призмы,

So — площадь основания призмы,

h — высота призмы.

Привальная четырехугольная пирамида.

Свойства правильной четырехугольной призмы.

  • Основания правильной четырехугольной призмы – это 2 одинаковых квадрата;
  • Верхнее и нижнее основания параллельны;
  • Боковые грани имеют вид прямоугольников;
  • Все боковые грани равны между собой;
  • Боковые грани перпендикулярны основаниям;
  • Боковые ребра параллельны между собой и равны;
  • Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям;
  • Углы перпендикулярного сечения — прямые;
  • Диагональное сечение правильной четырехугольной призмы является прямоугольником;
  • Перпендикулярное (ортогональное сечение) параллельно основаниям.

Формулы для правильной четырехугольной призмы.

Виды призм.

Призма, у которой в основании лежит параллелограмм, является параллелепипедом.

Прямая призма — это призма, с перпендикулярными боковыми ребрами относительно плоскости основания.

Остальные призмы являются наклонными.

Правильная призма — прямая призма, в основании у нее лежит правильный многоугольник. Боковые

грани такой призмы — одинаковые прямоугольники.

Правильная призма, у которой боковые грани – квадраты (высота равна стороне основания), называется

полуправильным многогранником.

Источник

Объем призмы и другие ее характеристики

Перед вами иллюстрированный гид о призме.

В картинках. С пояснениями к формулам. С примерами.

Определение, виды призм, высота, площадь, объем призмы — все, все, все!

Читайте и делитесь впечатлениями в комментариях!

Призма — коротко о главном

Определение призмы:

Призма – это многогранник, две грани которого (основания) – равные многоугольники, лежащие в параллельных плоскостях, а боковые грани – параллелограммы.

Высота призмы – перпендикуляр, опущенный из одной из вершин призмы на плоскость противоположного основания.

Виды призм:

Параллелепипед — это призма, основанием которой является параллелограмм.

Прямая призма – это призма, у которой боковые ребра перпендикулярны плоскости основания. Другие призмы называются наклонными.

Правильная призма – это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы – равные прямоугольники.

Объем призмы

Главная формула объема призмы:
\( \displaystyle V=S<<\ >_<основания>>\cdot \text\),
где \( <<\text>_<основания>>\) – площадь основания,
\( H\) – высота.

Необычная формула объема призмы:
\( \text=<<\text>_<\bot >>\cdot l\),
где \( <<\text>_<\bot >>\) – площадь сечения, перпендикулярного боковому ребру,
\( l\) – длина бокового ребра.

Площадь призмы

А теперь чуть подробнее…

Заходите и готовьтесь к ЕГЭ.

Что такое призма

Давай ответим сперва картинками:

Смотри: у призмы сверху и снизу два одинаковых многоугольника – они называются основаниями.

Остальные грани называются боковыми.

Плоскости оснований параллельный. Боковые грани – параллелограммы.

Смотри: бывают рёбра основания и боковые рёбра.

Важно знать, что:

Все боковые рёбра призмы равны и параллельны.

  • Если в основании призмы лежит треугольник, то призма называется треугольной, если четырёхугольник, то четырёхугольной и т.д.;
  • Бывают и десятиугольные, и двадцатиугольные призмы, но, к счастью, не в твоих задачах;
  • А тебе будут встречаться чаще всего треугольные, четырёхугольные и шестиугольные призмы.

Думаю, теперь мы можем дать более строгое определение призмы.

Определение призмы

Призма — многогранник, две грани которого (основания) — равные многоугольники, лежащие в параллельных плоскостях, а боковые грани — параллелограммы.

Виды призм

Призма, основанием которой является параллелограмм, называется параллелепипедом.

Прямая призма – это призма, у которой боковые ребра перпендикулярны плоскости основания.

Другие призмы называются наклонными.

Открыть ответы…

Чтобы открыть все задачи учебника, закрытые голубыми баннерами (как этот), зарегистрируйтесь один раз:

Высота призмы

Высота призмы – перпендикуляр, опущенный из одной из вершин призмы на плоскость противоположного основания.

И ясно, что та же самая высота получится, если опустить перпендикуляр из любой точки на верхней плоскости.

Объем призмы

Главная формула объема призмы

Необычная формула объема призмы

\( \text=<<\text>_<\bot >>\cdot l\),
где \( <<\text>_<\bot >>\) — площадь сечения, перпендикулярного боковому ребру,
\( l\) — длина бокового ребра.

Площадь призмы

Прямая призма

Если боковые рёбра призмы перпендикулярны основанию, то призма называется прямой.

Свойства прямой призмы:

  • Все боковые грани прямоугольники;
  • Все сечения, проходящие через боковые рёбра, – прямоугольники;
  • Даже сечения, проходящие только через одно боковое ребро, – прямоугольники;
  • У прямой призмы высота совпадает с боковым ребром.

Правильная призма

Если боковые рёбра призмы перпендикулярны основанию, а в основании лежит правильный многоугольник, то призма называется правильной.

То есть правильная призма – это прямая призма, у которой в основании правильный многоугольник.

Тебе, скорее всего, может встретиться:

Правильная треугольная призма – в основании правильный треугольник, боковые грани – прямоугольники.

Правильная четырёхугольная призма – это ещё и разновидность прямоугольного параллелепипеда – в основании квадрат, боковые грани – прямоугольники.

Правильная шестиугольная призма – в основании правильный шестиугольник, боковые грани – прямоугольники.

Главная формула объема призмы

Эта формула верна для любой призмы, но если призма прямая, то \( H\) «превращается» в боковое ребро. И тогда

– то же самое, что

\( \displaystyle V=S<<\ >_<основания>>\cdot боковое\ ребро\)

Необычная формула объёма призмы

Представь себе, есть ещё одна, «перевёрнутая» формула для объёма призмы:

\( <<\text>_<\bot >>\) – площадь сечения, перпендикулярного боковому ребру,

\( l\) – длина бокового ребра

Используется ли эта формула в задачах? Честно говоря, довольно редко, так что можешь ограничиться знанием основной формулы объёма.

Давай теперь для упражнения посчитаем объём самых популярных призм.

Объем правильной треугольной призмы

Пусть дано, что сторона основания равна \( a\), а боковое ребро равно \( b\).

Вспомним, как находить площадь правильного треугольника:

Подставляем в формулу объёма:

Объем правильной четырёхугольной призмы

Опять дано: сторона основания равна \( a\), боковое ребро равно \( b\).

Ну, площадь квадрата долго искать не надо:

Объем правильной шестиугольной призмы

Открыть ответы…

Чтобы открыть все задачи учебника, закрытые голубыми баннерами (как этот), зарегистрируйтесь один раз:

Площадь поверхности призмы

Площадь боковой поверхности призмы – сумма площадей всех боковых граней.

Есть ли общая формула?

Нет, в общем случае нет. Просто нужно искать площади боковых граней и суммировать их.

Площадь полной поверхности призмы – сумма площадей всех граней.

Формулу можно написать для прямой призмы:

\( \displaystyle <<\text>_<боков.>>=\text\cdot \text

\), где \( \displaystyle P\) – периметр основания.

Но всё-таки гораздо проще в каждом конкретном случае сложить все площади, чем запоминать дополнительные формулы.

Для примера посчитаем полную поверхность правильной шестиугольной призмы

Пусть сторона основания равна \( \displaystyle a\), а боковое ребро равно \( \displaystyle b\).

Открыть ответы…

Чтобы открыть все задачи учебника, закрытые голубыми баннерами (как этот), зарегистрируйтесь один раз:

Самые бюджетные курсы по подготовке к ЕГЭ на 90+

Алексей Шевчук — ведущий курсов

Добавить комментарий Отменить ответ

5 комментариев

Тут всё понятно,впервые начинаю понимать стереометрию

Супер Aper! Рады помочь!

Когда читаю теорию этого учебника, такое ощущение, что я разговариваю с другом. Настолько все просто и приятно. Сказать, что я влюбилась в этот материал, ничего не сказать. Спасибо вам!

Бася, вы нас растрогали таким комментарием. Спасибо большое! Удачи на экзамене!

Некоторые комментарии прошлых лет об этой статье:

Илья
26 ноября 2017
Огромное вам спасибо за созданный сайт, он очень удобен и информативен. Мне сложно представить какое количество времени было потрачено на «переработку» материала в понятном и доступном виде.Теперь есть источник чистых знаний, без лишней «воды», который не только помогает узнать новое, но и систематизировать информацию в голове. Жаль, что я не нашел сайт раньше. Вы лучшие!

Дмитрий
21 февраля 2018
Сайт отличный!Все подробно описано. Никогда не понимал эту тему, но благодаря создателям этого сайта я наконец понял эту тему. Спасибо вам за ваши труды. Очень вам благодарен.

Regina
29 марта 2018
Аааааааа,это просто лучшее. Никогда не разбиралась в геометрии…Готовясь к зачету искала все сайты на эту тему. Нашла вас. Ввы все объяснили просто и доступно. Спасибо большое!

Настя
21 мая 2018
Красивый сайт, ничего глаза не режет, смотреть и читать приятно.

Женя
27 февраля 2019
можете указать свои инициалы? мне это для проекта надо)

Анна
29 апреля 2019
Преподнесено очень понятным языком, с наглядными картинками, спасибо) Хотелось бы хоть пример одной задачи и решение чтобы было открыто бесплатно, чтобы понять на сколько хорошо поясняете, но я думаю все ок.

Жанна
27 апреля 2020
Спасибо! Я — учитель и мне очень понравилось!

Николай
04 июня 2020
Все очень доступно и понятно. Только вот не написано в статье про диагональ призмы. А так все просто супер, подготовился к сессии по данному материалу 🙂

Алексей Шевчук
05 июня 2020
Николай, спасибо. Диагонали в разных призмах разные, а в треугольной её и вовсе нет, поэтому длина диагонали — частный случай, а не какая-то полезная формула. Стоит рассмотрения разве что диагональ прямоугольного параллелепипеда — она вычисляется по теореме Пифагора и равна корню из суммы квадратов рёбер.

Источник

Читайте также:  Bmw x1 f48 объем бензобака
Поделиться с друзьями
Объясняем