Как через углы найти стороны прямоугольного треугольника если

Содержание
  1. Решение прямоугольного треугольника
  2. Решение прямоугольного треугольника по двум сторонам
  3. Если известны катет a и гипотенуза c
  4. Вычислить, найти решение прямоугольного треугольника по двум сторонам (катет и гипотенуза)
  5. Если известны катеты a и b
  6. Вычислить, найти решение прямоугольного треугольника по двум сторонам (катет и катет)
  7. Решение прямоугольного треугольника по стороне и острому углу
  8. Вычислить, найти решение прямоугольного треугольника если известны катет a и противолежащий угол A
  9. Как найти стороны прямоугольного треугольника
  10. Онлайн калькулятор
  11. Найти гипотенузу (c)
  12. Найти гипотенузу по двум катетам
  13. Найти гипотенузу по катету и прилежащему к нему острому углу
  14. Найти гипотенузу по катету и противолежащему к нему острому углу
  15. Найти гипотенузу по двум углам
  16. Найти катет
  17. Найти катет по гипотенузе и катету
  18. Найти катет по гипотенузе и прилежащему к нему острому углу
  19. Найти катет по гипотенузе и противолежащему к нему острому углу
  20. Найти катет по второму катету и прилежащему к нему острому углу
  21. Найти катет по второму катету и противолежащему к нему острому углу
  22. Все формулы для треугольника
  23. 1. Как найти неизвестную сторону треугольника
  24. 2. Как узнать сторону прямоугольного треугольника
  25. 3. Формулы сторон равнобедренного треугольника
  26. 4. Найти длину высоты треугольника
  27. Сторона треугольника через угол
  28. Катет прямоугольного треугольника через угол и второй катет
  29. Формула нахождения стороны через угол
  30. Как найти сторону прямоугольного треугольника — формулы, правило и примеры
  31. Произвольный треугольник
  32. Прямоугольная фигура
  33. Составляющие элементы и теорема Пифагора
  34. Основные свойства
  35. Способы нахождения длины стороны

Решение прямоугольного треугольника

Решение прямоугольного треугольника по двум сторонам

Если известны катет a и гипотенуза c

Второй катет b определится по теореме Пифагора:

Угол A определится по формуле синуса:

Поскольку сумма всех углов треугольника равна 180 ° то второй острый угол определится так:

Вычислить, найти решение прямоугольного треугольника по двум сторонам (катет и гипотенуза)

Если известны катеты a и b

Гипотенуза с определится по теореме Пифагора:

Угол A определится по формуле тангенса:

Поскольку сумма всех углов треугольника равна 180 ° то второй острый угол определится так:

Вычислить, найти решение прямоугольного треугольника по двум сторонам (катет и катет)

Решение прямоугольного треугольника по стороне и острому углу

Если дан острый угол A, то B найдется по формуле:

Стороны можно найти по следующим формулам:

$ a = c \sin(A) $ $ b = c \cos(A) $ $ a = b \tg(A) $
$ b = c \sin(B) $ $ a = c \cos(B) $ $ b = a \tg(B) $
$ c = \Large\frac<\sin(A)>\normalsize $ $ c = \Large\frac<\cos(A)>\normalsize $ $ b = \Large\frac<\tg(A)>\normalsize $

Вычислить, найти решение прямоугольного треугольника если известны катет a и противолежащий угол A

Здесь все углы мы найдем по формуле (7). Гипотенузу по формуле (14) и второй катет по формуле (16).

Источник

Как найти стороны прямоугольного треугольника

Онлайн калькулятор

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для гипотенузы (с):
    • длины катетов a и b
    • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • для катета:
    • длину гипотенузы (с) и длину одного из катетов
    • длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
    • длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
    • длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)

Введите их в соответствующие поля и получите результат.

Найти гипотенузу (c)

Найти гипотенузу по двум катетам

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

Формула

следовательно: c = √ a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = √ 3² + 4² = √ 9 + 16 = √ 25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:

c = 2 / cos(60) = 2 / 0.5 = 4 см

Найти гипотенузу по катету и противолежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:

c = 2 / sin(30) = 2 / 0.5 = 4 см

Найти гипотенузу по двум углам

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет

Найти катет по гипотенузе и катету

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:

a = √ 5² — 4² = √ 25 — 16 = √ 9 = 3 см

Найти катет по гипотенузе и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:

b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см

Найти катет по гипотенузе и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:

a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см

Найти катет по второму катету и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:

b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см

Найти катет по второму катету и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:

Источник

Все формулы для треугольника

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Формулы для катета, ( b ):

Формулы для гипотенузы, ( c ):

Формулы сторон по теореме Пифагора, ( a , b ):

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формулы длины равных сторон , (a):

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

H — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через стороны и радиус, ( H ):

Источник

Сторона треугольника через угол

Катет прямоугольного треугольника через угол и второй катет

Треугольник — это геометрическая фигура, образованная тремя отрезками соединяющихся тремя точками, у которой все углы внутренние.

Прямоугольный треугольник — это треугольник у которого один из углов прямой (равен 90°). Стороны треугольника образующие прямой угол называются катетами треугольника. Сторона противоположная прямому углу называется гиппотенузой.

Радиан — это угол, соответствующий дуге, длина которой равна её радиусу. Своё название данная едииница измерения получила от слова радиус. Имеет обозначение: рад, международное: rad.

Радианы являются основной единицей используемой в вичислениях.

Градус — общепринятая единица измерения плоского угла, которая равняется \dfrac<1> <90>части прямого угла или \dfrac<1> <360>часть окружности. В отличии от радиан, градусы являются чисто символическими единицами измерения, так сказать «взятые с потолка» и не имеют в своём значении ни какого математического основания.

Причина выбора градуса в качестве единицы измерения углов неизвестна. В быту измерение углов в градусах выглядит удобнее и понятнее, но что касается математических вычислений, то здесь основными единицами являются радианы.

Формула нахождения стороны через угол

Посчитать длину одного из катетов треугольника можно через второй катет и угол противолежащий искомой стороне:

Источник

Как найти сторону прямоугольного треугольника — формулы, правило и примеры

Произвольный треугольник

Фигура с тремя углами является самым простым замкнутым объектом в геометрии. В общеобразовательных школах ее изучению уделяют наибольшее время, поскольку многие основные геометрические свойства заложены именно в ней. Построить ее несложно, для этого необходимо взять три точки на плоскости так, чтобы они не располагались на одной прямой. После этого следует попарно соединить их прямыми отрезками.

Треугольник произвольного типа состоит из следующих элементов:

  • три вершины;
  • три стороны, которые в общем случае имеют различную длину;
  • одна вершина в совокупности с парой прилегающих к ней сторон образует угол, их в треугольнике три.

Помимо основных элементов, для этой фигуры существует множество дополнительных отрезков, которые имеют специальное название, например, медианы, биссектрисы, высоты.

Для рассматриваемой фигуры всегда справедливы три важных математических соотношения между ее длинами сторон и углами. Эти соотношения часто используют для решения разнообразных задач. К ним относятся следующие:

  1. О сумме углов. Треугольник характеризуется тремя углами, сумма которых всегда составляет 180 градусов или пи радиан. Это свойство следует из характеристики евклидовой геометрии на плоскости. Его записывают так: ∠ A + ∠ B + ∠ C = 180 °, где символом ∠ обозначен угол при соответствующей вершине.
  2. Теорема синусов. Словесная ее формулировка следующая: отношение длины стороны треугольника к синусу лежащего напротив нее угла является величиной постоянной для данной фигуры. Математически это утверждение записывается так: a/sinA = b/sinB = c/sinC, где буквами a, b и c обозначены длины сторон треугольника. Это выражение удобно использовать, когда по условию задачи известна одна сторона и два угла, и необходимо найти оставшиеся элементы фигуры.
  3. Косинусов теорема. Она звучит так: квадрат стороны треугольника равен сумме квадратов двух оставшихся сторон за вычетом их удвоенного произведения, которое помножено на косинус угла между ними. Несмотря на несколько громоздкую формулировку, теорема имеет лаконичную математическую формулу: c 2 = a 2 + b 2 — 2*a*b*cosC. Это выражение удобно применять, когда известны две стороны и угол в треугольнике.

Прямоугольная фигура

С незапамятных времен человечество интересовалось свойствами геометрических объектов. Одним из них был прямоугольный треугольник, который еще в Древнем Египте считался священным, поскольку обладал характерными для него особенностями (речь идет о фигуре, соотношение сторон которой находится в отношении 3:4:5). Большие достижения в области изучения геометрических свойств рассматриваемой фигуры имели философы античной Греции, среди которых выделяется имя Пифагора.

Составляющие элементы и теорема Пифагора

Поскольку речь идет о треугольнике, то для него также характерно наличие трех сторон и трех внутренних углов. Однако, в отличие от остальных фигур данного вида, прямоугольный треугольник имеет один угол равный 90 °. Остальные два угла всегда являются острыми, что следует из фиксированной суммы их значений (180 °).

Чтобы узнать, как называются стороны прямоугольного треугольника, следует рассмотреть его рисунок.

Стороны a и b образуют прямой угол. Они называются катетами. Сторона c, которая лежит против угла 90 °, ограничена двумя острыми углами. Она носит название гипотенузы. Эти названия стоит запомнить, поскольку на них основаны все свойства и теоремы для этого типа треугольника.

Существует два вида рассматриваемой фигуры:

В случае разностороннего прямоугольного треугольника стороны равны произвольным отрезкам, которые, однако, связывает теорема Пифагора. Катеты в этой фигуре отличаются друг от друга.

Касательно равнобедренного прямоугольного геометрического объекта можно сказать, что его катеты друг другу равны, но они никогда не равны гипотенузе. Острые углы в таком треугольнике составляют по 45 °, что легко доказать, применяя теорему синусов, и учитывая, что сумма трех углов соответствует 180 °.

Теорема косинусов для рассматриваемого треугольника произвольной формы вырождается в простое равенство:

c 2 = a 2 + b 2 — 2*a*b*cosC ==>

Оно получается потому, что косинус прямого угла равен нулю согласно свойству этой тригонометрической функции. Формулировка «квадрат гипотенузы в точности соответствует сумме квадратов катетов данного треугольника» носит название известной теоремы Пифагора. Чтобы ее доказать, не прибегая к теореме косинусов, следует провести некоторые геометрические построения.

Основные свойства

Несмотря на общие свойства, которыми обладает прямоугольный треугольник, и которые характерны для любой фигуры с тремя вершинами и тремя сторонами, для него существуют также присущие только ему особенности. Основными из них являются следующие:

  1. Наличие двух острых углов, что видно из рисунка треугольника прямоугольного.
  2. Длина гипотенузы всегда больше длины любого из катетов, при этом сумма длин последних всегда будет больше, чем одна гипотенуза.
  3. Справедливость теоремы Пифагора.
  4. Если один из острых углов равен 30 °, то противолежащий к нему катет ровно в два раза меньше длины гипотенузы.
  5. Сумма длины гипотенузы и диаметра окружности, вписанной в треугольник, равна сумме длин катетов. Математически получается следующая запись: c + 2*r = a + b, здесь r — радиус вписанной в треугольник окружности. Получить это выражение можно легко, если применить теорему о вписанной в произвольный треугольник окружности, которая устанавливает связь между r, p и S: S = p*r, где S — площадь фигуры, p — ее полупериметр.
  6. Чтобы понять, как найти основание прямоугольного треугольника, следует рассмотреть его катеты. Поскольку они перпендикулярны друг другу, то один из них может служить высотой, а другой основанием. Тогда площадь вычислится, как полупроизведение этих сторон: S = ½*a*b.
  7. Медиана M делит прямой угол равнобедренного треугольника на две равные части, то есть является биссектрисой. Одновременно она является высотой, длина которой равна половине гипотенузы: M = ½*c. Это свойство справедливо для любого треугольника с прямым углом, а не только для равнобедренного.
  8. Длину высоты h, которая проведена из вершины с прямым углом на основание-гипотенузу, можно найти по следующей формуле через катеты: h = a*b/(a 2 + b 2 )^0,5. Это равенство следует из формулы для площади фигуры.

Кроме названных свойств, следует отметить, что рассматриваемый геометрический объект является источником определения тригонометрических выражений (синуса, косинуса, котангенса и тангенса). Так, синусом угла ∠ A будет отношения противолежащего ему катета a к гипотенузе c, то есть sinA = a/c. Косинусом этого угла будет отношения ближайшего или прилежащего к нему катета к стороне c: cosA = b/c. Составлены целые таблицы этих функций, которые активно используются при решении геометрических проблем.

Способы нахождения длины стороны

Рассматриваемая фигура обладает достаточно большим количеством геометрических свойств, которые имеют математическое выражение в виде формул. Также для нее применимы особенности тригонометрических функций и общие формулы для треугольников общего типа. Весь этот набор равенств можно использовать для нахождения любой неизвестной стороны прямоугольной фигуры. Чаще всего встречаются задачи следующего типа:

  1. Известны две любые стороны. Независимо от того, неизвестен один из катетов или гипотенуза, найти эту сторону легко с использованием теоремы Пифагора. Пример для катета a выглядит так: a = (c 2 — b 2 )^0,5.
  2. По известному острому углу и произвольной стороне. В этом случае любую из двух оставшихся неизвестных сторон треугольника легко вычислить с помощью соответствующей тригонометрической функции. Например, известен угол ∠ B и катет a, тогда: b = a*tgB, с = a/cosB.
  3. По катету и высоте, проведенной из прямого угла. Для решения этой задачи сначала необходимо найти острый угол исходного треугольника, который определяется с помощью тригонометрической функции синуса. Как только он станет известен, задача сводится к типу 2.
  4. По периметру и стороне. Эта задача имеет более сложный характер, чем описанные ранее. Решается она с помощью той же теорема Пифагора, но с применением теории квадратных уравнений.
  5. Наконец, самый сложный вариант задачи на нахождение произвольного катета по известным площади фигуры и высоте, которая опущена из прямого угла. Здесь также необходимо использовать теорию решения квадратных уравнений, но в дополнение к этому следует использовать замену переменных.

Пусть площадь треугольника составляет 60 см 2 , а опущенная высота из острого угла равна 8 см. Необходимо посчитать, какие длины имеют катеты и гипотенуза.

Если внимательно прочитать условие задачи, то можно увидеть, что сама высота является одним из катетов, поскольку опущена она на основание не из прямого, а из острого угла. Пусть катет a = 8 см. Сторона b вычисляется по формуле для площади:

b = 2*S/a = 2*60/8 = 15 см.

Определить гипотенузу легко по формуле Пифагора:

c = (a 2 + b 2 )^0,5 = (8 2 + 15 2 )^0,5 = 17 см.

Прямоугольный треугольник обладает набором свойств, которые позволяют применить к нему знания тригонометрии, чтобы вычислить длину неизвестного катета или гипотенузы. При этом часто используемой формулой для решения геометрических задач является теорема Пифагора.

Источник

Читайте также:  Прямоугольная опалубка колонн geotub panel
Поделиться с друзьями
Объясняем