График зависимости углового ускорения от вращающего момента

Экспериментальное исследование основного закона динамики вращательного движения

Страницы работы

Содержание работы

Лабораторная работа №4

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ОСНОВНОГО ЗАКОНА ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

Цель работы: 1. Установить зависимость углового ускорения от момента силы при определенном моменте инерции системы.

2. Определить момент инерции системы.

Приборы и принадлежности: маятник Обербека, штангенциркуль, отвертка, секундомер, длинная линейка, набор грузов.

1. ОБЩИЕ СВЕДЕНИЯ

Вращательное движение, как и поступательное, описывается вторым законом Ньютона. В применении к вращательному движению он носит название основного закона динамики вращательного движения.

Этот закон устанавливает зависимость между суммарным моментом сил М, действующих на тело, моментом инерции тела I и приобретаемым угловым ускорением ε.

или (1)

Уравнение (1) — основное уравнение динамики вращательного движения.

Угловое ускорение зависит прямо пропорционально от момента силы

и обратно пропорционально от момента инерции

Если сравнить с поступательным движением, то момент силы М аналогичен силе, так как изменяет состояние тела, момент инерции I аналогичен массе тела. Момент инерции является мерой инертности тела при вращательном движении.

2. ФИЗИЧЕСКИЕ ОСНОВЫ ЭКСПЕРИМЕНТА

Чтобы установить зависимость между моментом силы М и угловым ускорением ε, нужно экспериментально определить каждую из этих величин.

Рассмотрим задачу о вращении маятника Обербека.

Если груз m, подвешенный на нити, достаточно велик, то он движется равноускоренно вниз. При этом крестовина вращается с угловым ускорением ε (рис. 1).

По второму закону Ньютона для груза составляем уравнение динамики

(2)

где a — линейное ускорение, м/с 2 ; Fr — сила реакции нити, приложенная к грузу, Н; mg — сила тяжести груза, H.

В то же время к шкиву приложена сила Fн — сила натяжения нити, причем, но третьему закону Ньютона Fн = —Fr, сила натяжения нити равна силе реакции нити. Значение F определим, спроецировав уравнение (2) на ось ОХ

Для вращающейся крестовины применяем основное уравнение динамики вращения М = Iε.

Момент силы М создается касательной к шкиву силой Fн, направление момента силы определяем по правилу правого винта (на рисунке М направлен за чертеж, что отмечено знаком X).

По определению момента силы

где r — плечо силы, м.

Подставив вместо Fн ее выражение (3), получим

Угловое ускорение ε связано с тангенциальным ускорением соотношением

(5)

Линейное ускорение а определяем из следующих соображений. В начальный момент времени скорость падения груза m равна 0. Если t — время падения груза с высоты h, то

(6)

Подставив формулу (6) в формулы (4) и (5), получим

(7)

Момент инерции крестовины можно рассчитать по формулам, зная длину и массу стержней, а также массу цилиндров m1 и их расстояния до оси вращения (рис. 1)

где Iкр — момент инерции крестовины, кг · м 2 ; — суммарный момент инерции цилиндров m1, кг · м 2 ; Iст — суммарный момент инерции стержней, кг · м 2 .

где mст — масса одного стержня, кг; l — длина одного стержня, м. Окончательная формула момента инерции принимает вид

(8)

3. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Исследовать зависимость углового ускорения от момента силы.

1) Установите с помощью отвертки цилиндры m1 на одинаковых расстояниях от центра вращения и закрепите их в этом положении на крестовине.

2) Измерьте линейкой высоту h падения груза m на нити.

3) Измерьте штангенциркулем диаметр шкива d´ — с намотанной нитью и d´´ — без нити, после чего найдите среднее арифметическое значение радиуса шкива

4) Подвешивая поочередно на нить грузы различной массы, измерьте секундомером время t падения каждого груза с высоты h. Время падения каждого грузя следует измерить пять раз и найти среднее арифметическое tср

Измерения произведите для 5-6 грузов. Результаты занесите в табл. 1

Источник

Зависимость углового ускорения e от действующего момента

2.1. Зависимость углового ускорения e от действующего момента

силы М при постоянном моменте инерции системы J = const

1. Заранее измерьте высоту h падения груза, которая может быть оставлена во всех последующих опытах одинаковой.

Читайте также:  Вычислите объем тела полученного при вращении вокруг оси абсцисс криволинейной трапеции

2. Укрепите цилиндры m1на стержнях на минимальном расстоянии от оси вращения. Сбалансируйте маятник.

3. Первый опыт проводится при минимальном значении массы груза m. Намотайте нить на шкив. Расположите нижний край груза на уровне верхней метки. Отпустите груз, предоставив ему возможность падать. Засеките время падения груза. Измерения повторите трижды. Значения m, r, h и среднее значение времени заносите в таблицу 1 отчета.

4. Измените значение момента сил Мн, увеличив массу груза. Снова трижды измерьте времени падения. (Момент силы можно также изменить, перенеся нить на шкив другого радиуса).

5. Проведите еще не менее трех опытов, постепенно увеличивая момент силы Мн.

6. Пользуясь формулами (4), (5), (8), определите для каждого опыта значения линейного ускорения а, углового ускорения e и момента силы натяжения нити Мн. Завершите заполнение таблицы 1.

Обсуждение результатов, полученных в опытах 2.1

Постройте график зависимости углового ускорения e от момента силы Мн при постоянном моменте инерции J=const. (график 1).

Поскольку e= f(Мн) – линейная функция (см. (3)), то ее графики в координатных осях [М,e,] — прямые линии. Если экспериментальные точки не ложатся на прямую, график надо провести так, чтобы «разброс» точек был приблизительно одинаков по обе стороны прямой. Если «разброс» мал, то это свидетельство того, что угловое ускорение действительно прямо пропорционально моменту сил, приложенных к вращающемуся телу, что подтверждает закон динамики вращательного движения.

Если разброс велик и это затрудняет построение графика, обработайте результаты методом наименьших квадратов или проделайте новую серию измерений.

2.2. Зависимости углового ускорения e от момента

инерции J системы при постоянном моменте силы М=const.

1. Все измерения в данном опыте должны проводятся при неизменном значении момента силы Mн, который зависит не только от массы груза m, радиуса шкива R, но и от ускорения падения груза (формула (10)). Но поскольку ускорение а оказывается гораздо меньше ускорения свободного падения g (что видно по результатам первого опыта), момент силы Мн можно считать приблизительно постоянным, если не менять значения m и R. При этом его можно вычислять по формуле:

(12)

Таким образом, масса груза и радиус шкива во всех последующих опытах берутся одинаковыми.

2. Укрепите цилиндры m1на стержнях на минимальном расстоянии от оси вращения. Сбалансируйте маятник. Измерьте расстояние r от середины подвижных цилиндров до оси вращения. Вычислите по формуле (10) момент инерции маятника в данном случае.

2. Трижды проведите измерение времени падения груза. Используя среднее значение времени падения, рассчитайте по формулам (4) и (5) линейное и угловое ускорение.

3. Переместите цилиндры m1 на стержнях на несколько сантиметров. Проверьте балансировку маятника. Измерьте расстояние r и вычисляют момент инерции маятника. Измерьте время падения груза.

4. Вновь переместите цилиндры на стержне, сбалансируйте маятник, вычислите момент инерции и измерьте время падения груза. Шаг перемещения цилиндров должен быть выбран таким образом, чтобы получить еще 3-4 значения момента инерции маятника. Заполните таблицу 2 отчета.

Обсуждение результатов, полученных в опытах 2.2.

В соответствии с законом динамики угловое ускорение обратно пропорционально моменту инерции, т. е. график зависимости e = f(J) представляет собой гиперболу и визуально не идентифицируется. Поэтому проверку зависимости e =f(J) лучше провести в координатных осях [e,J -1 ]. В этом случае график должен представлять собой прямую линию, проходящую через начало координат. Поэтому следует вычислить величины J -1 = 1/J и построить соответствующий график 2.

Если построенный по вашим измерениям график e = f(J -1 ) представляет собой прямую линию, то этот факт подтверждает справедливость второй части закона динамики вращательного движения – угловое ускорение обратно пропорционально моменту инерции вращающегося тела.

Если разброс велик и это затрудняет построение графика, обработайте результаты методом наименьших квадратов или проделайте новую серию измерений.

Дополнительная проверка достоверности результатов

Определение момента силы трения, действующей в системе

1. В идеальном случае все графики e=f(Mн) должны проходить через начало координат. Однако реальные прямые отсекают некоторое значение момента сил – существует некоторое минимальное значение момента сил, которое соответствует началу движения маятника. Координата этой точки дает величину момента силы трения скольжения в подшипнике маятника.

Определите по графику 1 значение момента силы трения и сравните полученный результат с Мтр, измеренном ранее в задании 1.

Читайте также:  Государственная экспертиза ведомость объемов работ

2. Угловой коэффициент наклона графика 1 равен моменту инерции маятника в данной его конфигурации: J=DM/De.

Определите момент инерции системы по графику и сравните с его значением, рассчитанным по формуле (10) для этой конфигурации. Если между ними есть различие, то объясните причину и укажите границу погрешности измерений.

3. Угловой коэффициент наклона графика 2 равен моменту приложенных к маятнику сил: .

Определите по графику момент сил, приложенных к маятнику, и сравните его со значением, рассчитанным по формуле (12.)

Контрольные вопросы и упражнения

1. Назовите основные характеристики вращательного движения, укажите их обозначения, дайте им определения и назовите единицы измерения. Выделите из них векторные.

2. Запишите уравнения, свзывающие угловую и линейную скорости, угловое и линейное ускорение, период и частоту.

3. Дайте определение момента инерции материальной точки. Назовите единицы измерения момента инерции.

4. Дайте определение момента силы, укажите его направление и назовите единицы измерения.

5. Что исследовалось в данной работе? Из каких заданий состоит вся работа? Как выполняется задание 1? Задание 2? Задание 3?

6. Каковы погрешности использованной в работе экспериментальной установки?

7. Какие выводы сделаны вами на основании анализа экспериментальных результатов?

8. Выполните дополнительно следующие задания контрольного характера.

8.1. Момент силы трения: По результатам задания 1

8.2. Момент инерции системы: По результатам вычислений

8.3. Момент силы: По результатам вычислений

Отчет по лабораторной работе № 2

«Изучение вращательного движения»

выполненной студент . . . . . курса, …. Ф. И. .

Задание 1. Определение момента силы трения

Задание 2. Проверка основного уравнения динамики вращательного движения

Источник

Вращательное движение

Законы, определяющие движение тела по окружности, аналогичны законам поступательного движения. Уравнения, описывающие вращательное движение, можно вывести из уравнений поступательного движения, произведя в последних следующие замены:

Если:
перемещение s — угловое перемещение (угол поворота) ?,
скорость u — угловая скорость ?,
ускорение a — угловое ускорение ?

Угол поворота

Во всех уравнения вращательного движения углы задаются в радианах, сокращенно (рад).

Если
? — угловое перемещение в радианах,
s — длина дуги, заключенной
между сторонами угла поворота,
r — радиус,
то по определению радиана

Соотношение между единицами угла

Обратите внимание: Наименование единицы радиан (рад) обычно указывается в формулах только в тех случаях, когда ее можно спутать с градусом. Поскольку радиан равен отношению длин двух отрезков
(1рад = 1м/ 1м = 1), он не имеет размерности.

Соотношение между угловой скоростью, угловым перемещением и временем для всех видов движения по окружности наглядно видны на графике угловой скорости (зависимость ? от t). Поэтому графику можно определить, какой угловой скоростью обладает тело в тот или иной момент времени и на какой угол с момента начала движения оно повернулось (он характеризуется площадью под кривой).

Кроме того, для представления соотношений между названными величинами используют график углового перемещения (зависимость ? от t) и график углового ускорения (зависимость ? от t).

Число оборотов

Характеристикой всех видов вращения является число оборотов n или равноценная ей характеристика — частота f. Обе величины характеризуют число оборотов в единицу времени.

Единица СИ частоты (или числа оборотов)

В технике число оборотов обычно измеряется в оборотах в минуту (об/мин) = 1/мин.

Таким образом, величина, обратная числу оборотов, есть продолжительность одного оборота.

Если
n — число оборотов,
f — частота,
T — продолжительность одного оборота, период,
? — угловое перемещение,
N — полное число оборотов,
t — время, продолжительность вращения,
? — угловая частота,
то

Период

Угловое перемещение

Угловое перемещение равно произведению полного числа оборотов на 2?:

Угловая скорость

Из формулы для одного оборота следует:

Обратите внимание:
формулы справедливы для всех видов вращательного движения — как для равномерного движения, так и для ускоренного. В них могут входить постоянные величины, средние значения, начальные и конечные значения, а также любые мгновенные значения.
вопреки своему названию число оборотов n — это не число, а физическая величина.
следует различать число оборотов n и полное число оборотов N.

Равномерное движение тела по окружности

Говорят, что тело движется по окружности равномерно, если его угловая скорость постоянна, т.е. тело за равные промежутки времени поворачивается на один и тот же угол.

? — угловая скорость (постоянная в течение времени t)
? — угловое перемещение
t — время поворота на угол ?

Поскольку на графике угловой скорости площадь прямоугольника соответствует угловому перемещению, имеем:

Постоянная угловая скорость — есть отношение углового перемещения (угла поворота) ко времени, затраченному на это перемещение.

Читайте также:  Clk 200 объем масла

Единица СИ угловой скорости:

Равномерно ускоренное движение по окружности без начальной угловой скорости

Тело начинает двигаться из состояния покоя, и его угловая скорость равномерно возрастает.

? — мгновенная угловая скорость тела в момент времени t
? — угловое ускорение, постоянное в течение времени t
? — угловое перемещение тела за время t, (? в радианах)
t — время

Поскольку на графике скорости угловое перемещение равно площади треугольника, имеем:

Поскольку вращение тела начинается из состояния покоя, изменение угловой скорости ?? равно достигнутой в результате ускорения угловой скорости ?. Поэтому формула принимает следующий вид:

Равномерно ускоренное движение по окружности с начальной угловой скоростью

Начальная скорость тела, равная ?0 в момент t = 0, изменяется равномерно на величину ??. (Угловое ускорение при этом постоянно.)

?0 — начальная угловая скорость
? — конечная угловая скорость
? — угловое перемещение тела за время t в радианах
t — время
? — угловое ускорение постоянное в течение времени t

Поскольку на графике скорости угловое перемещение соответствует площади трапеции под кривой скорости, имеем:

Так как площадь трапеции равна сумме площадей образующих ее треугольника и прямоугольника, получаем:

Далее из графика скорости следует

Совместив формулы мы получим

После преобразования получаем выражение, не содержащее времени:

Неравномерно ускоренное движение тела по окружности

Движение тела по окружности будет неравномерно ускоренным, если изменение угловой скорости происходит не пропорционально времени, т. е. если угловое ускорение не остается постоянным. В этом случае и угловая скорость и угловое ускорение являются функциями времени.

Связь величин ?, ? и ? представлена на соответствующих графиках.

Мгновенная угловая скорость

Полный угол поворота тела в любой момент времени можно определить по графику углового перемещения. Чем круче график, тем больше в данный момент времени мгновенная угловая скорость.

? — угол между касательной и осью времени t
? — мгновенная угловая скорость
? — угловое перемещение к моменту времени t

Мгновенной угловой скоростью называется первая производная функции ? = ?(t) по времени.

Обратите внимание:
1) чтобы вычислить мгновенную угловую скорость ?, необходимо знать зависимость углового перемещения от времени.
2) формула углового перемещения при равномерном движении тела по окружности и формула углового перемещения при равномерно ускоренном движении по окружности без начальной угловой скорости являются частными случаями формулы (2) соответственно для ? = 0 и ? = const.

Из формул следует:

Проинтегрировав обе части выражения, получим

Угловое перемещение есть интеграл по времени от угловой скорости.

Обратите внимание:
Для вычисления углового перемещения ? необходимо знать зависимость угловой скорости от времени.

Средняя угловая скорость

Средняя угловая скорость для некоторого интервала времени

Среднее число оборотов определяется аналогично формуле:

Вращательное движение тела, формулы

При вращательном движении твердого тела все элементы его массы, не лежащие на оси вращения, совершают движение по окружности. Аналогично и материальная точка, находящаяся на расстоянии r > 0 от оси вращения, также совершает движение по окружности, как и любое тело, достаточно удаленное от оси вращения.

Линейное перемещение Sл, линейная скорость uл и линейное ускорение aл при таком движении связаны между собой обычными для поступательного движения соотношениями.

Кроме того, эти величины связаны определенным образом с угловым перемещением ?, угловой скоростью ? и угловым ускорением ?.

перемещение тела по траектории, метр
скорость тела при движении по траектории, метр / секунда
ускорение данного тела при движении по траектории, метр / секунда2
r радиус траектории, метр
d диаметр траектории, метр
? угловое перемещение тела, радиан
? угловая скорость тела, радиан / секунда
? угловое ускорение тела, радиан / секунда2
f частота, Герц

Примечание:Формулы справедливы для постоянных, мгновенных и средних величин, во всех случаях движения тела по окружности.

Векторные величины, характеризующие вращательное движение тела

Угловая скорость и угловое ускорение тела являются векторными величинами. Эти векторы направлены вдоль оси вращения (аксиальные векторы), а их длина определяет величину соответствующих характеристик вращательного движения. Направление векторов определяется по правилу буравчика, т. е. совпадает с направлением поступательного движения буравчика, рукоятка которого движется в том же направлении, что и тело.

Определение:Если тело участвует одновременно в нескольких вращательных движениях, то результирующая угловая скорость определяется по правилу векторного (геометрического) сложения:

Величина результирующей угловой скорости определяется по аналогии с формулой (Сложение движений):

или, если оси вращения перпендикулярны друг другу

Примечание: Результирующее угловое ускорение определяется аналогичным образом. Графически результирующую можно найти как диагональ параллелограмма скоростей или ускорений.

Источник

Поделиться с друзьями
Строю.ру
Adblock
detector