График импульса тела при постоянном ускорении

Инфофиз. Репетитор по физике и информатике

Учу детей тому, как надо учиться

Учу детей тому, как надо учиться

Как сказал.

Вопрос 8

Импульс тела. Импульс силы. Закон сохранения импульса.

Краткий ответ

Импульсом тела называют векторную величину, равную произведению массы тела на его скорость:

— импульс тела, кг·м/с

m — масса тела, кг

— скорость тела, м/с

Импульс тела направлен в ту же сторону, что и скорость тела.

Единицей измерения импульса в СИ является 1 кг·м/с.

Физическая величина, равная произведению силы на время ее действия, называется импульсом силы:

Импульс силы также является векторной величиной.

Импульс силы равен изменению импульса тела (II закон Ньютона в импульсной форме):

Закон сохранения импульса.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

1, 2 — скорости тел до столкновения, м/с

1 ‘ , 2 ‘ — скорости тел после столкновения, м/с

Развернутый ответ

Задумывались ли вы когда-нибудь почему:

  • Мяч, летящий с большой скоростью, футболист может остановить ногой или головой, а вагон, движущийся по рельсам даже очень медленно, человек не остановит (масса вагона намного больше массы мяча).
  • Стакан с водой находится на длинной полоске прочной бумаги. Если тянуть полоску медленно, то стакан движется вместе с бумагой. а если резко дернуть полоску бумаги — стакан остается неподвижный. (стакан останется неподвижным из-за инерции — явления сохранения скорости тела постоянной при отсутствии действия на него других тел)
  • Теннисный мяч, попадая в человека, вреда не причиняет, однако пуля, которая меньше по массе, о движется с большой скоростью (600—800 м/с), оказывается смертельно опасной (скорость пули намного болше, чем мяча).

Значит, результат взаимодействия тел зависит и от массы тел и от их скорости одновременно.

Импульсом тела (или количеством движения) называют векторную величину, равную произведению массы тела на его скорость:

— импульс тела, кг·м/с

m — масса тела, кг

— скорость тела, м/с

Импульс тела направлен в ту же сторону, что и скорость тела.

Единицей измерения импульса в СИ является 1 кг·м/с.

Изменение импульса тела происходит при взаимодействии тел, например, при ударах. При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу.

Виды соударений:

Абсолютно неупругий удар — это такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

Читайте также:  A490bpg двигатель объем масла


Пуля застревает в бруске и далее они движутся как одно целое Кусок пластелина прилипает к стене

Абсолютно упругий удар — это столкновение, при котором сохраняется механическая энергия системы тел.


Шарики после столкновения отскакивают друг от друга в разные стороны Мяч отскакивает от стены

Пусть на тело массой m в течение некоторого малого промежутка времени Δt действовала сила F.

Под действием этой силы скорость тела изменилась на

Следовательно, в течение времени Δt тело двигалось с ускорением

Из основного закона динамики (второго закона Ньютона) следует:

Физическая величина, равная произведению силы на время ее действия, называется импульсом силы:

Импульс силы также является векторной величиной.

Импульс силы равен изменению импульса тела (II закон Ньютона в импульсной форме):

Именно в таком общем виде сформулировал второй закон сам Ньютон. Сила в этом выражении представляет собой равнодействующую всех сил, приложенных к телу.

Для определения изменения импульса удобно использовать диаграмму импульсов, на которой изображаются вектора импульсов, а также вектор суммы импульсов, построенный по правилу параллелограмма.

При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которой мы изучаем, называется механической системой или просто системой.

В механике часто встречаются задачи, когда необходимо одновременно рассматривать несколько тел, движущихся по-разному. Таковы, например, задачи о движении небесных тел, о соударении тел, об отдаче огнестрельного оружия, где и снаряд и пушка начинают двигаться после выстрела, и т. д. В этих случаях говорят о движении системы тел: солнечной системы, системы двух соударяющихся тел, системы «пушка — снаряд» и т. п. Между телами системы действуют некоторые силы. В солнечной системе это силы всемирного тяготения, в системе соударяющихся тел — силы упругости, в системе «пушка — снаряд» — силы, создаваемые пороховыми газами.

Импульс системы тел будет равен сумме импульсов каждого из тел. входящих в систему.

Кроме сил, действующих со стороны одних тел системы на другие («внутренние силы»), на тела могут действовать еще силы со стороны тел, не принадлежащих системе («внешние» силы); например, на соударяющиеся бильярдные шары действует еще сила тяжести и упругость стола, на пушку и снаряд также действует сила тяжести и т. п. Однако в ряде случаев всеми внешними силами можно пренебрегать. Так, при изучении соударения катящихся шаров силы тяжести уравновешены для каждого шара в отдельности и потому не влияют на их движение; при выстреле из пушки сила тяжести окажет свое действие на полет снаряда только после вылета его из ствола, что не скажется на величине отдачи. Поэтому часто можно рассматривать движения системы тел, полагая, что внешние силы отсутствуют.

Читайте также:  Геометрические приложения определенного интеграла площадь плоской фигуры объем тела вращения

Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой.

Замкнутая система – это система тел, которые взаимодействуют только друг с другом.

Закон сохранения импульса.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.


m1,m2 — массы взаимодейстующих тел, кг

1, 2 — скорости тел до столкновения, м/с

1 ‘ , 2 ‘ — скорости тел после столкновения, м/с

Закон сохранения импульса служит основой для объяснения обширного круга явлений природы, применяется в различных науках:

  1. Закон строго выполняется в явлениях отдачи при выстреле, явлении реактивного движения, взрывных явлениях и явлениях столкновения тел.
  2. Закон сохранения импульса применяют: при расчетах скоростей тел при взрывах и соударениях; при расчетах реактивных аппаратов; в военной промышленности при проектировании оружия; в технике — при забивании свай, ковке металлов и т.д

Вопросы к экзамену

Для студентов всех групп технического профиля Нвороссийского колледжа строительства и экономики (НКСЭ)

Список лекций по физике за 1,2 семестр

Источник

График импульса тела при постоянном ускорении

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела (или количеством движения ). Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду () .

Физическая величина, равная произведению силы на время ее действия, называется импульсом силы . Импульс силы также является векторной величиной.

В новых терминах второй закон Ньютона может быть сформулирован следующим образом: изменение импульса тела (количества движения) равно импульсу силы .

Обозначив импульс тела буквой второй закон Ньютона можно записать в виде

Именно в таком общем виде сформулировал второй закон сам Ньютон. Сила в этом выражении представляет собой равнодействующую всех сил, приложенных к телу. Это векторное равенство может быть записано в проекциях на координатные оси:

.

Таким образом, изменение проекции импульса тела на любую из трех взаимно перпендикулярных осей равно проекции импульса силы на эту же ось. Рассмотрим в качестве примера одномерное движение, т. е. движение тела по одной из координатных осей (например, оси ). Пусть тело свободно падает с начальной скоростью под действием силы тяжести; время падения равно . Направим ось вертикально вниз. Импульс силы тяжести за время равен . Этот импульс равен изменению импульса тела

, откуда .

Этот простой результат совпадает с кинематической формулой для скорости равноускоренного движения. В этом примере сила оставалась неизменной по модулю на всем интервале времени . Если сила изменяется по величине, то в выражение для импульса силы нужно подставлять среднее значение силы на промежутке времени ее действия. Рис. 1.16.1 иллюстрирует метод определения импульса силы, зависящей от времени.

Рисунок 1.16.1.

Выберем на оси времени малый интервал , в течение которого сила остается практически неизменной. Импульс силы за время будет равен площади заштрихованного столбика. Если всю ось времени на интервале от до разбить на малые интервалы , а затем просуммировать импульсы силы на всех интервалах , то суммарный импульс силы окажется равным площади, которую образует ступенчатая кривая с осью времени. В пределе () эта площадь равна площади, ограниченной графиком и осью . Этот метод определения импульса силы по графику является общим и применим для любых законов изменения силы со временем. Математически задача сводится к интегрированию функции на интервале .

Импульс силы, график которой представлен на рис. 1.16.1, на интервале от до равен:

В этом простом примере

В некоторых случаях среднюю силу можно определить, если известно время ее действия и сообщенный телу импульс. Например, сильный удар футболиста по мячу массой может сообщить ему скорость . Время удара приблизительно равно .

Импульс , приобретенный мячом в результате удара есть:

.

Следовательно, средняя сила , с которой нога футболиста действовала на мяч во время удара, есть:

Это очень большая сила. Она приблизительно равна весу тела массой .

Если движение тела во время действия силы происходило по некоторой криволинейной траектории, то начальный и конечный импульсы тела могут отличаться не только по модулю, но и по направлению. В этом случае для определения изменения импульса удобно использовать диаграмму импульсов , на которой изображаются вектора и , а также вектор построенный по правилу параллелограмма. В качестве примера на рис. 1.16.2 изображена диаграмма импульсов для мяча, отскакивающего от шероховатой стенки. Мяч массой налетел на стенку со скоростью под углом к нормали (ось ) и отскочил от нее со скоростью под углом . Во время контакта со стеной на мяч действовала некоторая сила направление которой совпадает с направлением вектора

Рисунок 1.16.2.

При нормальном падении мяча массой на упругую стенку со скоростью после отскока мяч будет иметь скорость Следовательно, изменение импульса мяча за время отскока равно В проекциях на ось этот результат можно записать в скалярной форме . Ось направлена от стенки (как на рис. 1.16.2), поэтому и . Следовательно, модуль изменения импульса связан с модулем скорости мяча соотношением .

Источник

Читайте также:  Глубокий мелкий это объем
Поделиться с друзьями
Объясняем