Доказать что сумма двух острых углов прямоугольного треугольника равна 90 градусов

Геометрия 7 класс Свойства прямоугольного треугольника. ..и доказательство одного из них, плиз

1. Сумма острых углов равна 90
2. Катет лежащий против угла 30 равен половине гипотенузы
3. Обратная теорема: Если катет равен половине гипотенузы, то угол, лежащий против него равен 30

Доказать думаю сами сможете

Треугольник называют прямоугольным, если у него есть прямой угол.

* Прямоугольный треугольник имеет две взаимно перпендикулярные стороны, называемые катетами; третья его сторона называется гипотенузой. По свойствам перпендикуляра и наклонных гипотенуза длиннее каждого из катетов (но меньше их суммы) .
* Сумма двух острых углов прямоугольного треугольника равна прямому углу.
* Две высоты прямоугольного треугольника совпадают с его катетами. Поэтому одна из четырех замечательных точек попадает в вершины прямого угла треугольника.
* Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
* Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, является радиусом описанной около этого треугольника окружности.

В прямоугольном треугольнике сумма острых углов равна 90°.
Катет в прямоугольном треугольнике, лежащий против угла в 30°, равен половине гипотенузы.
Если катет в прямоугольном треугольнике равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.

Сумма углов треугольника равна 180°,
а прямой угол равен 90°,
поэтому
сумма двух оставшихся острых углов прямоугольного треугольника
равна 90°.

Рассмотрим прямоугольный треугольник АВС, в котором  А-прямой,  В=30° и значит,
 С=60°. Докажем, что АС=1/2 ВС. Приложим к треугольнику АВС равный ему треугольник АВД так, как показано на рисунке. Получим треугольник ВСД, в котором  В =  Д =60°,поэтому ДС=ВС. Но АС=1/2 ДС. Следовательно, АС=1/2 ВС, что и требовалось доказать.

Рассмотрим прямоугольный треугольник АВС, у которого катет АС равен половине гипотенузы ВС. Докажем, что  АВС=30°.
Приложим к треугольнику АВС равный ему треугольник АВД . Получим равносторонний треугольник ВСД. Углы равностороннего треугольника равны друг другу, поэтому каждый из них равен 60°. В частности,
 ДВС=60°. Но  ДВС=2  АВС. Следовательно,  АВС=30°, что и требовалось доказать.

Сумма двух острых углов прямоугольного треугольника равна .
Катет прямоугольного треугольника, лежащий против угла в 30°, равен .
Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, ..
Вопрос 2
Если сумма двух углов треугольника равна 90°, то этот треугольник является .

Вопрос 3
В прямоугольном треугольнике АВС угол А равен 30°. Чему равна гипотенуза АВ, если катет СВ равен 7 см?

7 см
14 см
17 см
21 см
Вопрос 4
В прямоугольном треугольнике АВС длина гипотенузы АВ в два раза больше катета ВС. Чему равен угол А?

45°
60°
15°
30°
Вопрос 5
Чему равны углы при основании равнобедренного прямоугольного треугольника?

45° и 45°
30° и 60°
55° и 55°
55° и 35°
Вопрос 6
Если в треугольниках АВС и А1В1С1 катет АС равен катету А1С1 и катет ВС равен катету В1С1. Можно ли утверждать, что данные треугольники равны?

Можно
Нельзя
Вопрос 7
На рисунке сторона АВ равна стороне ВС треугольника АВС. Верно ли, что треугольник АВD равен треугольнику ВСD?

Верно
Неверно
Вопрос 8
Верно ли, что катет прямоугольного треугольника может быть больше гипотенузы?

Верно
Неверно
Вопрос 9
В прямоугольном треугольнике острые углы относятся как 2:1. Чему равны их градусные меры?

45° и 45°
60° и 90°
30° и 60°
30° и 90°
Вопрос 10
Один из углов треугольника больше другого на 30° и меньше третьего на 30°. Чему равна градусная мера большего угла треугольника?

Источник

Некоторые свойства прямоугольных треугольников

Урок 23. Геометрия 7 класс

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности

Конспект урока «Некоторые свойства прямоугольных треугольников»

Вспомним, что прямоугольным называют треугольник, который содержит прямой угол. Две стороны, образующие прямой угол, называют катетами, а противолежащую сторону — гипотенузой прямоугольного треугольника.

Сумма углов треугольника равна 180 градусов.

Сумма двух острых углов прямоугольного треугольника равна 90 градусов.

Пусть АВС — прямоугольный треугольник, у которого ∠С=90 градусов.

Читайте также:  Прямоугольные кухни шириной 2 метра

Так как сумма углов треугольника равна 180 градусов, то:

Что и требовалось доказать.

Катет прямоугольного треугольника, лежащий против угла в 30 градусов, равен половине гипотенузы.

Пусть АВС — прямоугольный треугольник, у которого ∠С=90 градусов, а ∠А=30 градусов. А тогда по теореме о сумме углов треугольника ∠В=60 градусов. Докажем, что катет ВС равен половине гипотенузы АВ.

Приложим к треугольнику АВС равный ему треугольник АСD следующим образом:

Получили, что у треугольника АВD все углы равны по 60 градусов, то есть он является равносторонним. Получаем:

Что и требовалось доказать.

Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30 градусов.

Пусть АВС — прямоугольный треугольник, у которого катет ВС равен половине гипотенузы АВ. Докажем, что угол ВАС=30 градусов.

Приложим к треугольнику АВС равный ему треугольник АСD следующим образом:

Получили равносторонний треугольник АВD. Известно, что все углы равностороннего треугольника равны 60 градусам. Полуаем:

Что и требовалось доказать.

Сумма гипотенузы и катета, лежащего против угла в 30 градусов, равна 15 сантиметров. Найти длину гипотенузы.

Пусть АВС — прямоугольный треугольник. ∠А=30 градусов. Получим:

Подставим это в предыдущее равенство и получаем:

В прямоугольном треугольнике АВС, ∠С=90 градусов, а ∠ВАС=60 градусов. Найти длину катета ВС, если высота СD треугольника АСВ равна 5 сантиметров.

Рассмотрим прямоугольный треугольник АВС. ∠АСВ=90 градусов, ∠ВАС=60 градусов. А так как сумма острых углов прямоугольного треугольника равна 90 градусов, то ∠АВС=90-60=30 градусов.

Рассмотрим треугольник ВСD, который является прямоугольным, так как СD — высота и ∠СВD=30 градусов, то катет СD лежит против угла в 30 градусов. Следовательно, по выше доказанному свойству, гипотенуза ВС=2*5=10 см.

Отрезок СD — высота прямоугольного треугольника АВС с прямым углом С, ВС=2*ВD. Доказать, что АВ=4*ВD.

Рассмотрим прямоугольный треугольник BCD:

У него ∠ВСD=30 градусов, так как по условию ВС=2*ВD.

По условию задачи ∠АСВ=90 градусов, а ∠ВСD=30 градусов, значит, ∠АСD=60 градусов.

Так как СD — высота, то треугольник АСD — прямоугольный. ∠АСD=60 градусов. Следовательно, ∠САD=30 градусов.

Теперь рассмотрим треугольник АВС. У него ∠ВАС=30 градусов. Следовательно, гипотенуза АВ=2*ВС, так как катет ВС лежит против угла в 30 градусов. По условию задачи ВС=2*ВD.

Источник

Сумма острых углов прямоугольного треугольника равна 90

Здравствуйте!
Помогите выбрать правильные утверждения:
1. Сумма острых углов прямоугольного треугольника равна 90 градусов.
2. В любой четырёхугольник может быть вписана окружность.
Также нужны объяснения, что правильно, а что неправильно в этих утверждениях.
Спасибо!

Такие утверждения чаще всего выносятся на итоговый экзамен по математике. Они могут быть как правильными, так и неправильными. Главное внимательно вчитываться и обращать внимание на каждую мелочь, о которой говорится в этом утверждении. Рассмотрим примеры и обратим внимание, на что именно нужно делать акцент при определении правильности утверждения.

Утверждение 1.
Сумма острых углов прямоугольного треугольника равна 90 градусов.

Ответ.
Утверждение верно.
Первое, на что нужно обратить внимание, – это то, что речь идет об углах прямоугольного треугольника.
Вспоминаем, что известно о них.

  1. Для прям-ного треуг-ка известно, что один его угол равняется 90 градусов.
  2. Для любого треуг-ка известно, что сумма его углов равна 180 градусов.

Дальше простая арифметика:
Все углы треуг-ка в сумме дают 180 градусов. Углов у треуг-ка 3, один из которых равен 90 градусов. Следовательно, сумма двух других углов равна 180 – 90 = 90 градусов.

Утверждение 2.
В любой четырёхугольник может быть вписана окружность.

Ответ.
Утверждение является неправильным.
Существует теорема, согласно которой окружность можно вписать только в такой четырехугольник, суммы противоположных сторон которого равны. Такими четырехугольниками являются квадрат, ромб, некоторые трапеции. А вот в прямоугольник, например, окружность вписать нельзя.

Источник

Доказать что сумма двух острых углов прямоугольного треугольника равна 90 градусов

Вопрос по геометрии:

Докажите что сумма острых углов прямоугольного треугольника равна 90 градусов

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

решение(обзовем треугольник АВС):

1)проведем прямую через прямой угол, параллельную гипотенузе(а параллельно АС по построению)

2)АВ и ВС секущие

3)угол ВАС и аВС накрестлежащие

4)угол ВАС=аВС(как накрестлежащие)

5)угол ВСА и аВА накрестлежащие

6)угол ВСА=аВА(как накрестлежащие)

7)угол АВС=90градусов(по условию)

10)угол ВАС+ВСА=90градусов(что и следовало доказать)

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.
Читайте также:  Образец прямоугольной печати больницы

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

Источник

Доказать что сумма двух острых углов прямоугольного треугольника равна 90 градусов

Задание 19. Какое из следующих утверждений не верно?

1) Сумма острых углов прямоугольного треугольника равна 90 градусам.

2) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.

3) Любые два равносторонних треугольника подобны.

1) Да, сумма острых углов прямоугольного треугольника всегда равна 90 градусам.

2) Нет, равенство суммы не означает равенство длин этих сторон.

3) Да, равносторонние треугольники подобны по трем углам.

  • Вариант 1
  • Вариант 1. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 2
  • Вариант 2. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 3
  • Вариант 3. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 4
  • Вариант 4. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 5
  • Вариант 5. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
  • Внимание! Нумерация заданий в сборнике 2021 отличается от сборника 2020

  • Вариант 7
  • Задания 1-5 полностью совпадают с Вариант 5. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 1. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 8
  • Задания 1-5 полностью совпадают с Вариант 5. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 2. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 9
  • Задания 1-5 полностью совпадают с Вариант 19. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 3. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 10
  • Задания 1-5 полностью совпадают с Вариант 20. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 4. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 11
  • Задания 1-5 полностью совпадают с Вариант 13. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 5. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 12
  • Задания 1-5 полностью совпадают с Вариант 14. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 6. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 13
  • Задания 1-5 полностью совпадают с Вариант 11. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 7. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 14
  • Задания 1-5 полностью совпадают с Вариант 12. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 8. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 15
  • Задания 1-5 полностью совпадают с Вариант 35. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 9. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 16
  • Задания 1-5 полностью совпадают с Вариант 36. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 10. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 17
  • Задания 6-25 полностью совпадают с Вариант 11. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 1-5
    • 14
  • Вариант 18
  • Задания 6-25 полностью совпадают с Вариант 12. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 1-5
    • 14
  • Вариант 19
  • Задания 1-5 полностью совпадают с Вариант 15. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 13. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 20
  • Задания 1-5 полностью совпадают с Вариант 16. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 14. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 21
  • Задания 1-5 полностью совпадают с Вариант 29. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 15. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 22
  • Задания 1-5 полностью совпадают с Вариант 30. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 16. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 23
  • Задания 1-5 полностью совпадают с Вариант 31. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 17. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 24
  • Задания 1-5 полностью совпадают с Вариант 32. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 18. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 25
  • Задания 1-5 полностью совпадают с Вариант 27. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 19. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 26
  • Задания 1-5 полностью совпадают с Вариант 28. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 20. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 27
  • Задания 1-5 полностью совпадают с Вариант 1. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 21. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 28
  • Задания 1-5 полностью совпадают с Вариант 2. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 22. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 29
  • Задания 6-25 полностью совпадают с Вариант 23. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 1-5
    • 8
    • 14
  • Вариант 30
  • Задания 6-25 полностью совпадают с Вариант 24. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 1-5
    • 8
    • 14
  • Вариант 31
  • Задания 1-5 полностью совпадают с Вариант 23. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 25. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 32
  • Задания 1-5 полностью совпадают с Вариант 24. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 26. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 33
  • Задания 1-5 полностью совпадают с Вариант 4. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 31. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 34
  • Задания 1-5 полностью совпадают с Вариант 21. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 32. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 14
  • Вариант 35
  • Задания 1-5 полностью совпадают с Вариант 17. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 33. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14
  • Вариант 36
  • Задания 1-5 полностью совпадают с Вариант 18. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Задания 6-25 полностью совпадают с Вариант 34. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Кроме заданий:
    • 8
    • 14

Источник

Читайте также:  Закон относительного движения точки по окружности
Поделиться с друзьями
Объясняем