Биссектрисы всех углов параллелограмма при пересечении образую прямой угол

Биссектрисы углов параллелограмма

Какими свойствами обладают биссектрисы углов параллелограмма? Для биссектрис углов, прилежащих к одной стороне параллелограмма, и для биссектрис противолежащих углов эти свойства разные.

Свойство биссектрис углов параллелограмма, прилежащих к одной стороне.

Биссектрисы углов параллелограмма, прилежащих к одной стороне, взаимно перпендикулярны.

Дано: ABCD — параллелограмм,

AF биссектриса ∠BAD,

DK- биссектриса ∠ADC,

1) ∠BAD+∠ADC=180º (как внутренние односторонние углы при AB ∥ CD и секущей AD).

2) Так как биссектриса угла делит его пополам, то

4) Рассмотрим треугольник ADM. Так как сумма углов треугольника равна 180º, то

90º+∠AMD=180º, откуда ∠AMD=180º- 90º=90º,

то есть биссектрисы углов параллелограмма, прилежащие к стороне AD, перпендикулярны.

Что и требовалось доказать.

В следующий раз рассмотрим свойство биссектрис противолежащих углов параллелограмма.

Источник

Биссектрисы всех углов параллелограмма при пересечении образую прямой угол

2022-03-23
Биссектрисы внутренних углов параллелограмма $ABCD$ образуют четырёхугольник $EFGH$, каждая вершина которого получена как пересечение двух биссектрис. Найдите сумму квадратов всех сторон в четырёхугольнике $EFGH$, если $AB=AD+\frac<3><2>$.

Пусть биссектрисы углов при вершинах $A$ и $D$ параллелограмма $ABCD$ пересекаются в точке $E$, биссектрисы углов при вершинах $C$ и $D$ — в точке $F$, при вершинах $B$ и $C$ — в точке $G$, при вершинах $A$ и $B$ — в точке $H$. Противоположные стороны четырёхугольника $EFGH$ попарно параллельны, значит, $EFFGH$ — параллелограмм.
Пусть биссектрисы $AE$ и $CG$ пересекают стороны $CD$ и $AB$ в точках $P$ и $Q$. Треугольник $ADP$ — равнобедренный, т.к.

$\angle APD=\angle BAP=\angle DAP.$

Аналогично, треугольник $CBQ$ — также равнобедренный.
Угол $AED$ — прямой как угол между биссектрисами внутренних односторонних углов при параллельных прямых $AB$ и $CD$ и секущей $AP$, поэтому $EFGH$ — прямоугольник. Биссектриса $DE$ равнобедренного треугольника $ADP$ является его медианой, значит, $E$ — середина $AP$. Аналогично, $G$ — середина $CQ$.
Четырёхугольник $EGCP$ — параллелограмм, т.к. его противоположные стороны $EP$ и $CG$ равны и параллельны, значит,

Диагонали прямоугольника равны, поэтому $FH=EG=\frac<3><2>$, а т.к. сумма квадратов всех сторон любого параллелограмма равна сумме квадратов его диагоналей (см. задачу 7209), то сумма квадратов всех сторон прямоугольника $EFGH$ равна $2\cdot\frac<9><4>=\frac<9><2>$.

Источник

Биссектрисы параллелограмма

Если биссектрисы углов параллелограмма, прилежащих к одной стороне перпендикулярны, то биссектрисы противолежащих углов обладают другим свойством.

Свойство биссектрис противоположных углов параллелограмма.

Биссектрисы противоположных углов параллелограмма параллельны или лежат на одной прямой.

Дано: ABCD — параллелограмм,

AF — биссектриса ∠BAD,

CN- биссектриса ∠BCD.

Доказать: AF ∥ CN или лежат на одной прямой.

1) Так как AF — биссектриса ∠BAD, CN — биссектриса ∠BCD (по условию), то

Следовательно, их половины тоже равны: ∠FAD=∠BCN.

при BC ∥ AD и секущей BC).

А так как эти углы — соответственные при прямых AF и CN и секущей BC, то AF ∥ CN (по признаку параллельности прямых).

Если все стороны параллелограмма равны, биссектрисы противоположных углов лежат на одной прямой.

В этом случае из того, что AB=BC следует, что треугольник ABC — равнобедренный с основанием AC,

а значит, ∠BAC=∠BCA (как углы при основании равнобедренного треугольника).

Источник

Свойства параллелограмма:известные и не очень

известные и не очень…

учебный предмет — геометрия

3.Частные виды параллелограмма…4-5

Свойства, известные и не очень…5-12 Вывод……………………………………12 Источники информации……………13

Как-то на уроке геометрии учитель предложил нам доказать свойство параллелограмма, которого в учебнике не было. Оно звучало так: биссектриса угла параллелограмма отсекает от него равнобедренный треугольник. Мы рассмотрели несколько задач, которые с помощью этого свойства решились очень просто.

Читайте также:  Если расстояние между центральными точками двух несовпадающих окружностей равно разности их радиусов

Учитель сказала, что таких свойств много и можно даже попробовать вывести их самим. И тогда я подумала, что это может быть интересно, ведь с помощью этих дополнительных свойств можно будет еще быстрее и легче решать задачи, которые иногда кажутся трудными.

И я занялась исследованием свойств параллелограмма.

Узнать и вывести самой как можно больше дополнительных свойствах параллелограмма, которые не изучаются в школе.

Ø Изучить историю возникновения параллелограмма и историю развития его свойств

Ø Найти дополнительную литературу по исследуемому вопросу

Ø Спросить у знающих людей, знакомых, старшеклассников

Ø Попробовать вывести свойства самой

Для начала я решила узнать, откуда появилось определение параллелограмма. Оказывается термин «параллелограмм» греческого происхождения и, согласно древнегреческому философу Проклу, был введен Евклидом. Понятие параллелограмма и некоторые его свойства были известны еще пифагорейцам.

В «Началах» Евклида доказывается следующая теорема: в параллелограмме противоположные стороны равны и противоположные углы равны, а диагональ разделяет его пополам. Евклид не упоминает о том, что точка пересечения диагоналей параллелограмма делит их пополам. Он не рассматривает ни прямоугольника, ни ромба.

Полная теория параллелограммов была разработана к концу средних веков и появились в учебниках лишь в XVII веке. Все теоремы о параллелограммах основываются непосредственно или косвенно на теореме Евклида о свойствах параллелограмма.

Само же понятие параллелограмм от греч. Parallelos — параллельный и gramme — линия. Поэтому слово «параллелограмм» можно перевести как «параллельные линии».

3) Частные виды параллелограмма

Известны некоторые виды параллелограмма:

Прямоугольник — параллелограмм, все углы которого прямые. Прямоугольник имеет все свойства параллелограмма, но так же имеет свое собственное: Диагонали прямоугольника равны.

Ромб — параллелограмм, все стороны которого равны. Ромб обладает очень важным индивидуальным свойством: Диагонали ромба взаимно перпендикулярны и делят его углы пополам.

Слово «ромб» тоже греческого происхождения, оно означало в древности вращающееся тело, веретено, юлу. Ромб связывали первоначально с сечением, проведенным в обмотанном веретене.

Квадрат — равносторонний прямоугольник (или параллелограмм, у которого все углы прямые, стороны равны между собой; или ромб, у которого все углы прямые). Так как квадрат является и ромбом, и прямоугольником, и параллелограммом он имеет все свойства вышеперечисленных фигур.

Термин «квадрата» происходит от латинского quadratum (quadrare — сделать четырехугольным), перевод с греческого “тетрагонон” — четырехугольник.

Схематически пересечение и объединение свойств этих фигур можно изобразить так:

4) Свойства, известные и не очень…

В учебнике по геометрии даны только 2 свойства параллелограмма:

· Противоположные углы и стороны равны

· Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам

Я предлагаю 10 дополнительных свойств:

· Сумма соседних углов параллелограмма равна 180◦

Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник;

Биссектрисы противоположных углов параллелограмма лежат на параллельных прямых;

Биссектрисы соседних углов параллелограмма пересекаются под прямым углом;

Биссектрисы всех углов параллелограмма при пересечении образуют прямоугольник;

Расстояния от противоположных углов параллелограмма до одной и той же его диагонали равны.

Если соединить середины сторон прямоугольника, то получится ромб;

Если в параллелограмме соединить противоположные вершины с серединами противоположных сторон, то получится еще один параллелограмм.

Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его смежных сторон.

Если в параллелограмме из двух противоположных углов провести высоты, то получится прямоугольник.

· Противоположные стороны и углы параллелограмма равны.

· Диагонали пересекаются и точкой пересечения делятся пополам

· Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник

· Биссектрисы противоположных углов параллелограмма лежат на параллельных прямых;

· Биссектрисы соседних углов параллелограмма пересекаются под прямым углом;

· Биссектрисы всех углов параллелограмма при пересечении образуют прямоугольник;

· Расстояния от противоположных углов параллелограмма до одной и той же его диагонали равны.

Читайте также:  Около окружности радиуса 12 см описана равнобедренная трапеция периметр которой равен 100 см найдите

· Если соединить середины сторон прямоугольника, то получится ромб;

Доказательство: ▲ KHA = ▲ HDE = ▲ ECF= ▲ FBK (по двум сторонам и углу между ними), значит KF=FE=EA=HK.

Если все стороны равны, то дан ромб.

· Если в параллелограмме соединить противоположные вершины с серединами противоположных сторон, то получится еще один параллелограмм.

· Если в параллелограмме из двух противоположных углов провести высоты, то получится прямоугольник.

Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его смежных сторон.

Исследуя свойства параллелограмма, я увидела, что на уроках мы изучаем только очень малую часть айсберга под названием «геометрия», многое мы просто не успеваем рассмотреть. Однако то, что остается за рамками учебника очень полезно и интересно. В частности, исследуемые мною свойства. А применение этих свойств позволяет сделать решения задач более простыми и быстрее прийти к нужному результату. А на сколько важно уметь решать геометрические задачи, мы убеждаемся на каждом уроке, когда видим практическое приложение изучаемого материала. О важности математических, в частности геометрических знаний говорит тот факт, что была, в больших размерах, учреждена премия тому, кто издаст книгу о человеке, который всю жизнь прожил без помощи математики. До сих пор эту премию не получил ни один человек.

6) Источники информации:

«Большая Энциклопедия Кирилла и Мефодия»

Источник

Параллелограмм: свойства и признаки

О чем эта статья:

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны и равны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

  1. В параллелограмме точка пересечения диагоналей делит их пополам.
  2. Любая диагональ параллелограмма делит его на два равных треугольника.
  3. Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.

Биссектриса угла параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

  1. Биссектриса параллелограмма отсекает от него равнобедренный треугольник.
  2. Биссектрисы углов, прилежащих к одной стороне параллелограмма пересекаются под прямым углом.
  3. Отрезки биссектрис противоположных углов равны и параллельны.

Как найти площадь параллелограмма:

  1. S = a × h, где a — сторона, h — высота.
  2. S = a × b × sinα, где a и b — две стороны, sinα — синус угла между ними. Для ромба формула примет вид S = a 2 × sinα.
  3. Для ромба: S = 0,5 × (d1 × d2), где d1 и d2 — две диагонали.
    Для параллелограмма: S = 0,5 × (d1 × d2) × sinβ, где β — угол между диагоналями.

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 × (a + b), где a — ширина, b — высота.

У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

  1. Противоположные стороны параллелограмма равны.
    ABCD — параллелограмм, значит, AB = DC, BC = AD.
  2. Противоположные углы параллелограмма равны.
    ABCD — параллелограмм, значит, ∠A = ∠C, ∠B = ∠D.
  3. Диагонали параллелограмма точкой пересечения делятся пополам.
    ABCD — параллелограмм, AC и BD — диагонали, AC∩BD=O, значит, BO = OD, AO = OC.
  4. Диагональ делит параллелограмм на два равных треугольника.
    ABCD — параллелограмм, AC — диагональ, значит, △ABC = △CDA.
  5. Сумма углов в параллелограмме, прилежащих к одной стороне, равна 180 градусам.
    ABCD — параллелограмм, значит, ∠A + ∠D = 180°.
  6. В параллелограмме диагонали d1, d2 и стороны a, b связаны следующим соотношением: d1 2 + d2 2 = 2 × (a 2 + b 2 ).
Читайте также:  Трапеция дворников от приоры на 2114

А сейчас докажем теорему, которая основана на первых двух свойствах.

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

  1. AB = CD как противоположные стороны параллелограмма.
  2. ∠1 = ∠2 как накрест лежащие углы при пересечении секущей AC параллельных прямых AB и CD; ∠3 = ∠4 как накрест лежащие углы при пересечении секущей BD параллельных прямых AB и CD.
  3. Следовательно, треугольник AOB равен треугольнику COD по второму признаку равенства треугольников, то есть по стороне и прилежащим к ней углам, из чего следует:
    • CO = AO
    • BO = DO

Теорема доказана. Наше предположение верно.

Признаки параллелограмма

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB || CD
  • AB = CD

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

  1. AC — общая сторона;
  2. По условию AB = CD;
  3. ∠1 = ∠2 как внутренние накрест лежащие углы при пересечении параллельных прямых AB и CD секущей АС.

Шаг 3. Из равенства треугольников также следует:

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB = CD
  • BC = AD

Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:

  • AC — общая сторона;
  • AB = CD по условию;
  • BC = AD по условию.

Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.

Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

  • CO = OA;
  • DO = BO;
  • углы между ними равны, как вертикальные, то есть угол AOB равен углу COD.

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.

Источник

Поделиться с друзьями
Объясняем