Биссектрисы равнобокой трапеции пересекаются

Биссектрисы углов при боковой стороне трапеции

Рассмотрим два полезных свойства, которыми обладают биссектрисы углов при боковой стороне трапеции.

Биссектрисы углов при боковой стороне трапеции пересекаются под прямым углом.

Дано: ABCD — трапеция, AD ∥ BC,

CO — биссектриса ∠BCD,

DO — биссектриса ∠ADC.

∠ADC+∠BCD=180º (как внутренние односторонние углы при AD ∥ BC и секущей CD).

Так как CO — биссектриса ∠BCD, то

Так как DO — биссектриса ∠ADC,

По теореме о сумме углов треугольника

Отсюда,

Что и требовалось доказать.

Биссектрисы углов при боковых сторонах трапеции пересекаются в точке, лежащей на средней линии трапеции.

Дано: ABCD — трапеция, AD ∥ BC,

CO — биссектриса ∠BCD,

DO — биссектриса ∠ADC,

MN — средняя линия трапеции.

Доказать : O ∈ MN.

1) Рассмотрим треугольник COD — прямоугольный (по доказанному утверждению 1).

Проведем из вершины прямого угла COD медиану ON.

2) Так как ON=CN, треугольник OCN — равнобедренный с основанием OC.

(как углы при основании равнобедренного треугольника).

Так как CO — биссектриса ∠BCD,

А так как эти углы — внутренние накрест лежащие при ON и BC и секущей OC, то ON ∥ BC (по признаку параллельности прямых).

Имеем: прямая ON параллельна основанию трапеции BC и проходит через середину боковой стороны CD. Следовательно, эта прямая содержит среднюю линию трапеции. Таким образом, точка O лежит на средней линии трапеции.

Источник

В равнобедренной трапеции ABCD биссектриса угла A пересекается

В равнобедренной трапеции ABCD с большим основанием AD биссектриса угла A пересекается с биссектрисой угла C в точке F, а также пересекает сторону CD в точке K. Известно, что прямые AB и CF параллельны. Найти CF, если FK=4√3.

Дано: ABCD — трапеция, AD||BC, AB=CD,

Читайте также:  Трапеция автомобиля ваз 2107

AF — биссектриса ∠BAD, CF — биссектриса∠BCD,

CF||AB, AF∩CD=K, FK=4√3

Пусть CF пересекает AD в точке M.

Так как биссектриса угла трапеции отсекает от неё равнобедренный треугольник, то ΔCDM — равнобедренный с основанием CM, то есть CD=MD.

CM||AB (по условию), AM||BC (как основания трапеции). Значит, четырёхугольник ABCM — параллелограмм и CM=AB (по свойству параллелограмма).

Поскольку CD=AB (по условию), то CM=CD=MD. Следовательно, треугольник CDM — равносторонний, все его углы равны по 60° и ∠MCD=60°.

Так как AF и CF — биссектрисы углов∠BAD и ∠BCD, то

∠CFK=∠BAK (как соответственные при CM||AB и секущей AK).

По теореме о сумме углов треугольника в треугольнике CFK ∠CKF=90°.

Источник

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия –

Отношение площадей этих треугольников есть .

4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

Читайте также:  Задачи на описанную окружность егэ

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная окружность

Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и , то

Площадь

или где – средняя линия

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Источник

Решение №1221 В равнобедренной трапеции АВСD с большим основанием АD …

В равнобедренной трапеции АВСD с большим основанием АD биссектриса угла А пересекается с биссектрисой угла С в точке F, а также пересекает сторону СD в точке К. Известно, что угол АFС равен 150°. Найдите СК, если FК = 6√3.

Источник: Ященко ОГЭ 2021 (36 вар)

По условию ∠АFC = 150°, ∠АFC и ∠СFK смежные их сумма равна 180°, найдём ∠СFK:

∠СFK = 180° – ∠АFC = 180° – 150° = 30°

∠СFK = ∠AFN = 30° как вертикальные углы.
Обозначим углы полученные делением биссектрисc за х и у.

∠BCN = ∠NCD = x
∠BAK = ∠KAD = y

Сумма противолежащих углов равнобедренной трапеции равна 180º, значит:

∠A + ∠C = 180°
2y + 2x = 180°
y + x = 90°
y = 90° – x

∠BCN = ∠DNC = x как накрест лежащие при BC||AD и секущей CN.
В ΔAFN сумма углов равна 180°, ∠ANF = 180° – x, как смежные.

y + 30° + 180° – x = 180°
y – x = –30°
Подставим значение у из прошлого уравнения:
90° – xx = –30°
– 2х = –120°
x=\frac<–120><–2>=60°=\angle FCK

По теореме синусов из ΔFCK найдём сторону СK:

Источник

Узнать ещё

Знание — сила. Познавательная информация

Биссектрисы трапеции

Рассмотрим некоторые задачи, в которых биссектрисы углов трапеции пересекаются.

I. Биссектрисы углов при боковой стороне трапеции пересекаются.

1)∠ ABC+ ∠ BAD=180 º (как внутренние односторонние при AD ∥ BC и секущей AB).

Читайте также:  Заглушка для труб прямоугольная 40x20

2) ∠ ABK+ ∠ KAB=( ∠ ABC+ ∠ BAD):2=90 º (так как биссектрисы делят углы пополам).

3) Так как сумма углов треугольника равна 180 º , в треугольнике ABK имеем: ∠ ABK+ ∠ KAB+ ∠ AKB=180 º , отсюда ∠ AKB=180-90=90 º .

Биссектрисы углов при боковой стороне трапеции пересекаются под прямым углом.

Это утверждение, в частности, применяется при решении базовой задачи на трапецию, в которую вписана окружность.

Пусть биссектриса угла ABC пересекает сторону AD в точке S. Тогда треугольник ABS — равнобедренный с основанием BS (доказательство можно посмотреть здесь). Значит, его биссектриса AK является также медианой, то есть точка K — середина BS.

Если M и N — середины боковых сторон трапеции, то MN — средняя линия трапеции и MN ∥ AD.

Так как M и K — середины AB и BS, то MK — средняя линия треугольника ABS и MK ∥ AS.

Поскольку через точку M можно провести лишь одну прямую, параллельную данной, точка K лежит на средней линии трапеции.

Точка пересечения биссектрис трапеции, прилежащих к боковой стороне, лежит на средней линии трапеции.

II. Точка пересечения биссектрис острых углов при основании трапеции принадлежит другому основанию.

В этом случае треугольники ABK и DCK — равнобедренные с основаниями AK и DK соответственно.

Таким образом, BC=BK+KC=AB+CD.

Если биссектрисы острых углов трапеции пересекаются в точке, принадлежащей меньшему основанию, то меньшее основание равно сумме боковых сторон трапеции.

В частности, у равнобедренной трапеции в этом случае меньшее основание в два раза больше боковой стороны.

III.Точка пересечения биссектрис тупых углов при основании трапеции принадлежит другому основанию.

В этом случае треугольники ABF и DCF — равнобедренные с основаниями BF и CF соответственно.

Отсюда AD=AF+FD=AB+CD.

Если биссектрисы тупых углов трапеции пересекаются в точке, принадлежащей большему основанию, то большее основание равно сумме боковых сторон трапеции.

У равнобедренной трапеции в этом случае большее основание в два раза больше боковой стороны.

Источник

Поделиться с друзьями
Объясняем