- Биссектриса равнобедренного треугольника вдвое меньше другой биссектрисы найдите углы треугольника
- Биссектриса равнобедренного треугольника вдвое меньше другой биссектрисы найдите углы треугольника
- Решение
- Ответ
- Источники и прецеденты использования
- Свойства биссектрисы равнобедренного треугольника
- Свойства биссектрисы равнобедренного треугольника
- Свойство 1
- Свойство 2
- Свойство 3
- Свойство 4
- Пример задачи
- Определение и свойства биссектрисы угла треугольника
- Определение биссектрисы угла треугольника
- Свойства биссектрисы треугольника
- Свойство 1 (теорема о биссектрисе)
- Свойство 2
- Свойство 3
- Свойство 4
- Свойство 5
- Пример задачи
- Биссектрисы равнобедренного треугольника
Биссектриса равнобедренного треугольника вдвое меньше другой биссектрисы найдите углы треугольника
2021-08-03
Биссектриса равнобедренного треугольника, проведённая из вершины, вдвое меньше другой биссектрисы. Найдите углы треугольника.
Первый способ. Пусть $A$ — вершина равнобедренного треугольника $ABC$, а его биссектриса $AM$ вдвое меньше биссектрисы $BD$. На продолжении биссектрисы $AM$ за точку $M$ отложим отрезок $MK$, равный $AM$. Тогда $BK\parallel AD$ и $AK=BD$. Если $P$ — точка пересечения биссектрис треугольника $ABC$, то $BP=KP$ ($BADK$ — трапеция с равными диагоналями $AK$ и $BD$, пересекающимися в точке $P$). Обозначим $\angle ABP=\alpha$. Тогда
$\angle PKB=\angle PBK=3\alpha,
\angle BPK=\angle ABP+\angle BAK,$
Из этого уравнения находим, что $\alpha=18^<\circ>$. Следовательно, $\angle ABC=36^<\circ>$.
Второй способ. Пусть $A$ — вершина равнобедренного треугольника $ABC$, а его биссектриса $AM$ вдвое меньше биссектрисы $BD$. Обозначим $\angle ABD=\angle CBD=\alpha$. Тогда $\angle ACB=\angle ABC=2\alpha$.
Через точку $M$ проведём прямую, параллельную биссектрисе $AD$. Пусть $E$ — точка пересечения этой прямой со стороной $AD$. Тогда $ME$ — средняя линия треугольника $ABC$, поэтому $ME=\frac<1><2>BD=AM$, а $\angle CME=\angle CBD=\alpha$. Треугольник $AME$ равнобедренный, поэтому
$\angle MAD=\angle AEM=\angle CME+\angle MCE=\alpha+2\alpha=3\alpha.$
С другой стороны, из прямоугольного треугольника $AMC$ получаем, что
$\angle MAD=\angle MAC=90^<\circ>-\angle ACM=90^<\circ>-2\alpha.$
находим, что $\alpha=18^<\circ>$. Следовательно,
Источник
Биссектриса равнобедренного треугольника вдвое меньше другой биссектрисы найдите углы треугольника
В равнобедренном треугольнике ABC (AB = BC) биссектриса BD в два раза короче биссектрисы AE. Найдите углы треугольника ABC.
Решение
Пусть ∠A = 2α. Достроим треугольник ABC до ромба ABCF. BF = 2BD = AE, следовательно, трапеция ABEF – равнобедренная. Значит,
∠AFE = ∠BAF = 4α, а ∠BFE = ∠BAE = α. Поэтому ∠ABF = ∠AFB = 3α. Из прямоугольного треугольника ABD получаем 2α + 3α = 90°, откуда α = 18°.
Ответ
Источники и прецеденты использования
Кружок | |
Название | ВМШ 57 школы |
класс | |
Класс | 7 |
год | |
Место проведения | 57 школа |
Год | 2005/06 |
занятие | |
Название | Часы с кукушкой |
Тема | Неопределено |
Номер | 4 |
задача | |
Номер | 7 |
Кружок | |
Название | ВМШ 57 школы |
класс | |
Класс | 7 |
год | |
Год | 2001/02 |
Место проведения | 57 школа |
занятие | |
Номер | 5 |
Название | Часы с кукушкой |
Тема | Неопределено |
задача | |
Номер | 07 |
Проект осуществляется при поддержке и .
Источник
Свойства биссектрисы равнобедренного треугольника
В данной публикации мы рассмотрим основные свойства биссектрисы равнобедренного треугольника (внутренней и внешней), а также разберем пример решения задачи по данной теме.
Примечание: напомним, что равнобедренным называется треугольник, в котором две стороны равны (боковые), а третья является основание фигуры.
Свойства биссектрисы равнобедренного треугольника
Свойство 1
В равнобедренном треугольнике биссектрисы, проведенные к боковым сторонам, равны между собой.
- AB = BC, т.к. являются боковыми сторонами равнобедренного △ABC;
- AF = CG, т.к. это биссектрисы, проведенные к боковым сторонам треугольника (или биссектрисы углов BAC и ACB, которые также равны между собой).
Обратная формулировка: если две из трех биссектрис в треугольнике равны, значит он является равнобедренным.
Свойство 2
В равнобедренном треугольнике биссектриса, проведенная к основанию, одновременно является и медианой и высотой.
- BH – биссектриса угла ABC, проведенная к основанию AC;
- BH – медиана, значит она делит AC пополам, т.е. AH = HC;
- BH – высота, следовательно, она перпендикулярна AC.
Свойство 3
Если известны стороны равнобедренного треугольника, то длину биссектрисы, проведенную к основанию, можно посчитать по формуле:
Примечание: данная формула следует из теоремы Пифагора ( l и a – катеты прямоугольного треугольника, b – его гипотенуза).
Свойство 4
Внешняя биссектриса угла равнобедренного треугольника, расположенного напротив его основания, параллельна этому основанию.
- BD – внешняя биссектриса ∠ABC треугольника;
- BD параллельна основанию AC.
Примечание: к равнобедренному треугольнику применимы и другие свойства биссектрисы, приведенные в нашей публикации – “Определение и свойства биссектрисы угла треугольника”.
Пример задачи
Биссектриса равнобедренного треугольника с боковой стороной 25 см равняется 20 см. Найдите периметр фигуры.
Решение
Воспользуемся формулой, приведенной в Свойстве 3, чтобы найти длину основания.
a 2 = b 2 – l 2 = 25 2 – 20 2 = 225 .
Извлекаем квадратный корень из найденного значения и получаем 15 см.
Следовательно, основание треугольника равно 30 см (15 см ⋅ 2).
Периметр фигуры равен сумме всех ее сторон, т.е.: 25 см + 25 см + 30 см = 80 см.
Источник
Определение и свойства биссектрисы угла треугольника
В данной публикации мы рассмотрим определение и основные свойства биссектрисы угла треугольника, а также приведем пример решения задачи, чтобы закрепить представленный материал.
Определение биссектрисы угла треугольника
Биссектриса угла – это луч, который берет начала в вершине угла и делит данный угол пополам.
Биссектриса треугольника – это отрезок, соединяющий вершину угла треугольника с противоположной стороной и делящий этот угол на две равные части. Такая биссектриса, также, называется внутренней.
Основание биссектрисы – точка на стороне треугольника, которую пересекает биссектриса. Т.е. в нашем случае – это точка D.
Внешней называется биссектриса угла, смежного с внутренним углом треугольника.
Свойства биссектрисы треугольника
Свойство 1 (теорема о биссектрисе)
Биссектриса угла треугольника делит его противоположную сторону в пропорции, равной отношению прилежащих к данному углу сторон. Т.е. для нашего треугольника (см. самый верхний рисунок):
Свойство 2
Точка пересечения трех внутренних биссектрис любого треугольника (называется инцентром) является центром вписанной в фигуру окружности.
Свойство 3
Все биссектрисы треугольника в точке пересечения делятся в отношении, равном сумме прилежащих к углу сторон, деленной на противолежащую сторону (считая от вершины).
Свойство 4
Если известны длины отрезков, образованных на стороне, которую пересекает биссектриса, а также две другие стороны треугольника, найти длину биссектрисы можно по формуле ниже (следует из теоремы Стюарта):
BD 2 = AB ⋅ BC – AD ⋅ DC
Свойство 5
Внешняя и внутренняя биссектрисы одного и того же угла треугольника перпендикулярны друг к другу.
- CD – внутренняя биссектриса ∠ACB;
- CE – биссектриса угла, смежного с ∠ACB;
- ∠DCE равен 90°, т.е. биссектрисы CD и CE перпендикулярны.
Пример задачи
Дан прямоугольный треугольник с катетами 6 см и 8 см. Найдите длину биссектрисы, проведенной к гипотенузе.
Решение
Нарисуем чертеж согласно условиям задачи.
Применив теорему Пифагора мы можем найти длину гипотенузы (ее квадрат равен сумме квадратов двух катетов).
BC 2 = AB 2 + AC 2 = 6 2 + 8 2 = 100.
Следовательно, BC = 10 см.
Далее составляем пропорцию согласно Свойству 1, условно приняв отрезок BD на гипотенузе за “a” (тогда DC = “10-a”):
Избавляемся от дробей и решаем получившееся уравнение:
8a = 60 – 6a
14a = 60
a ≈ 4,29
Таким образом, BD ≈ 4,29 см, CD ≈ 10 – 4,29 ≈ 5,71 см.
Теперь мы можем вычислить длину биссектрисы, использую формулу, приведенную в Свойстве 4:
AD 2 = AB ⋅ AC – BD ⋅ DC = 6 ⋅ 8 – 4,29 ⋅ 5,71 ≈ 23,5.
Источник
Биссектрисы равнобедренного треугольника
Свойства биссектрис равнобедренного треугольника
I. Биссектрисы углов при основании равнобедренного треугольника (проведенные к боковым сторонам), равны.
AN и BM — биссектрисы.
Рассмотрим треугольники ACN и BCM
(не забываем, как важно правильно назвать равные треугольники!).
1) AC=BC (по условию (как боковые стороны равнобедренного треугольника))
3) ∠ CAN= ∠ CBM (как углы, на которые биссектрисы делят равные углы при основании равнобедренного треугольника)
Следовательно, ∆ACN=∆BCM (по стороне и двум прилежащим к ней углам).
Из равенства треугольников следует равенство соответствующих сторон: AN=BM.
Что и требовалось доказать.
Если в треугольнике два угла раны, то этот треугольник — равнобедренный (по признаку).
Если в треугольнике две стороны равны, то этот треугольник — равнобедренный (по определению).
Отсюда вытекает, что
Биссектрисы, проведенные из равных углов треугольника, равны.
Биссектрисы, проведенные к равным сторонам треугольника, равны.
(Вместо пары треугольников ACN и BCM можно было рассмотреть треугольники ABM и BAN.
1) AB — общая сторона
2) ∠ MAB= ∠ NBA (как углы при основании равнобедренного треугольника)
3) ∠ ABM= ∠ BAN (как углы, образованные биссектрисами равных углов).
Следовательно, треугольники ACN и BCM равны по стороне и двум прилежащим к ней углам).
II. Биссектриса угла при основании равнобедренного треугольника делит боковую сторону на отрезки, пропорциональные боковой стороне и основанию.
Источник