Биссектриса равнобедренного треугольника проведенная к боковой стороне делит ее на отрезки

Биссектрисы равнобедренного треугольника

Свойства биссектрис равнобедренного треугольника

I. Биссектрисы углов при основании равнобедренного треугольника (проведенные к боковым сторонам), равны.

AN и BM — биссектрисы.

Рассмотрим треугольники ACN и BCM

(не забываем, как важно правильно назвать равные треугольники!).

1) AC=BC (по условию (как боковые стороны равнобедренного треугольника))

3) ∠ CAN= ∠ CBM (как углы, на которые биссектрисы делят равные углы при основании равнобедренного треугольника)

Следовательно, ∆ACN=∆BCM (по стороне и двум прилежащим к ней углам).

Из равенства треугольников следует равенство соответствующих сторон: AN=BM.

Что и требовалось доказать.

Если в треугольнике два угла раны, то этот треугольник — равнобедренный (по признаку).

Если в треугольнике две стороны равны, то этот треугольник — равнобедренный (по определению).

Отсюда вытекает, что

Биссектрисы, проведенные из равных углов треугольника, равны.

Биссектрисы, проведенные к равным сторонам треугольника, равны.

(Вместо пары треугольников ACN и BCM можно было рассмотреть треугольники ABM и BAN.

1) AB — общая сторона

2) ∠ MAB= ∠ NBA (как углы при основании равнобедренного треугольника)

3) ∠ ABM= ∠ BAN (как углы, образованные биссектрисами равных углов).

Следовательно, треугольники ACN и BCM равны по стороне и двум прилежащим к ней углам).

II. Биссектриса угла при основании равнобедренного треугольника делит боковую сторону на отрезки, пропорциональные боковой стороне и основанию.

Источник

Свойства биссектрисы равнобедренного треугольника

В данной публикации мы рассмотрим основные свойства биссектрисы равнобедренного треугольника (внутренней и внешней), а также разберем пример решения задачи по данной теме.

Примечание: напомним, что равнобедренным называется треугольник, в котором две стороны равны (боковые), а третья является основание фигуры.

Свойства биссектрисы равнобедренного треугольника

Свойство 1

В равнобедренном треугольнике биссектрисы, проведенные к боковым сторонам, равны между собой.

  • AB = BC, т.к. являются боковыми сторонами равнобедренного △ABC;
  • AF = CG, т.к. это биссектрисы, проведенные к боковым сторонам треугольника (или биссектрисы углов BAC и ACB, которые также равны между собой).

Обратная формулировка: если две из трех биссектрис в треугольнике равны, значит он является равнобедренным.

Свойство 2

В равнобедренном треугольнике биссектриса, проведенная к основанию, одновременно является и медианой и высотой.

  • BH – биссектриса угла ABC, проведенная к основанию AC;
  • BH – медиана, значит она делит AC пополам, т.е. AH = HC;
  • BH – высота, следовательно, она перпендикулярна AC.

Свойство 3

Если известны стороны равнобедренного треугольника, то длину биссектрисы, проведенную к основанию, можно посчитать по формуле:

Примечание: данная формула следует из теоремы Пифагора ( l и a – катеты прямоугольного треугольника, b – его гипотенуза).

Свойство 4

Внешняя биссектриса угла равнобедренного треугольника, расположенного напротив его основания, параллельна этому основанию.

  • BD – внешняя биссектриса ∠ABC треугольника;
  • BD параллельна основанию AC.

Примечание: к равнобедренному треугольнику применимы и другие свойства биссектрисы, приведенные в нашей публикации – “Определение и свойства биссектрисы угла треугольника”.

Пример задачи

Биссектриса равнобедренного треугольника с боковой стороной 25 см равняется 20 см. Найдите периметр фигуры.

Решение
Воспользуемся формулой, приведенной в Свойстве 3, чтобы найти длину основания.
a 2 = b 2 – l 2 = 25 2 – 20 2 = 225 .

Извлекаем квадратный корень из найденного значения и получаем 15 см.
Следовательно, основание треугольника равно 30 см (15 см ⋅ 2).

Периметр фигуры равен сумме всех ее сторон, т.е.: 25 см + 25 см + 30 см = 80 см.

Источник

Биссектриса равнобедренного треугольника проведенная к боковой стороне делит ее на отрезки

На отрезке BD взята точка C. Биссектриса BL равнобедренного треугольника ABC с основанием BC является боковой стороной равнобедренного треугольника BLD с основанием BD.

а) Докажите, что треугольник DCL равнобедренный.

б) Известно, что В каком отношении прямая DL делит сторону AB?

а) Пусть углы при основании ВС равнобедренного треугольника ABC равны 2α, тогда углы при основании BD равнобедренного треугольника LBD равны α. Но угол LCB является внешним углом треугольника LCD, он равен сумме углов CDL и CLD. Поэтому угол CLD также равен α, и, следовательно, треугольник LCD равнобедренный.

б) Пусть ВС = х, а АК — медиана и высота равнобедренного треугольника АВС. Тогда в прямоугольном треугольнике АКВ имеем: откуда

Биссектриса BL делит сторону, к которой она проведена, на отрезки, пропорциональные прилежащим сторонам: поскольку получаем: В пункте а) было доказано, что треугольник LCD равнобедренный, поэтому Применим теорему Менелая к треугольнику ABC:

откуда

Ответ: 9 : 7 (или 7 : 9).

Приведем решение п. б), предложенное Олегом Цимбалистом.

Пусть Тогда как внешний угол треугольника BLD. По теореме синусов для треугольника BHL, имеем

Заметим теперь, что а По теореме синусов для треугольника AHL, имеем

Приведем ещё одно решение.

а) Обозначим тогда поэтому значит, треугольник LCD — равнобедренный.

б) Пусть H — точка пересечения DL с AB. Тогда

поэтому по двум углам. Отсюда

Поскольку то Пусть BC = x, AB = 3x. По теореме о биссектрисе откуда находим Тогда значит, откуда

Еще несколько подходов изложены при решении задания 513277.

Критерии оценивания выполнения задания Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) 3
Получен обоснованный ответ в пункте б)

имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки

2
Имеется верное доказательство утверждения пункта а)

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Источник

Равнобедренный треугольник: свойства, признаки и формулы

Содержание:

  1. Свойства равнобедренного треугольника.
  2. Признаки равнобедренного треугольника.
  3. Формулы равнобедренного треугольника:
    • формулы длины стороны;
    • формулы длины равных сторон;
    • формулы высоты, медианы, биссектрисы равнобедренного треугольника.

Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми, а третья сторона — основанием.

АВ = ВС — боковые стороны

Свойства равнобедренного треугольника

Свойства равнобедренного треугольника выражаются через 5 теорем:

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Доказательство теоремы:

Рассмотрим равнобедренный Δ ABC с основанием АС.

Боковые стороны равны АВ = ВС,

Следовательно углы при основании ∠ BАC = ∠ BСA.

Теорема о биссектрисе, медиане, высоте, проведенной к основанию равнобедренного треугольника

  • Теорема 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
  • Теорема 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
  • Теорема 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Доказательство теоремы:

  • Дан Δ ABC.
  • Из точки В проведем высоту BD.
  • Треугольник разделился на Δ ABD и ΔCBD.Эти треугольники равны, т.к. гипотенузы и общий катет у них равны (теорема Пифагора).
  • Прямые АС и BD называются перпендикуляром.
  • В Δ ABDи ΔBCD∠ BАD = ∠ BСD(из Теоремы 1).
  • АВ = ВС — боковые стороны равны.
  • Стороны АD = СD, т.к. точка Dотрезок делит пополам.
  • Следовательно Δ ABD =ΔBCD.
  • Биссектриса, высота и медиана это один отрезок — BD

Вывод:

  1. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
  2. Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.
  3. Биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и высотой.

Запомни! При решении таких задач опусти высоту на основание равнобедренного треугольника. Чтобы разделить его на два равных прямоугольных треугольника.

  • Теорема 5. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

Доказательство теоремы:

Доказательство от противного.

  • Пусть треугольники не равны (а то треугольники были равны по первому признаку).
  • Пусть Δ A1B1C2 = Δ ABC, у которого вершина C2 лежит в одной полуплоскости с вершиной C1 относительно прямой A1B1. По предположению вершины C1 и C2 не совпадают. Пусть D – середина отрезка C1C2. Δ A1C1C2 и Δ B1C1C2 – равнобедренные с общим основанием C1C2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой C1C2. A1D и B1D имеют разные точки A1 и B1, следовательно, не совпадают. Но через точку D прямой C1C2 можно провести только одну перпендикулярную ей прямую.
  • Отсюда пришли к противоречию и теорему доказали.

Признаки равнобедренного треугольника

  1. Если в треугольнике два угла равны.
  2. Сумма углов треугольника 180°.
  3. Если в треугольнике биссектриса является медианой или высотой.
  4. Если в треугольнике медиана является биссектрисой или высотой.
  5. Если в треугольнике высота является медианой или биссектрисой.

Формулы равнобедренного треугольника

Формулы сторон равнобедренного треугольника

  • b — сторона (основание)
  • а — равные стороны
  • a — углы при основании
  • b — угол образованный равными сторонами

Формулы длины стороны (основания — b):

  • b = 2a \sin( \beta /2)= a \sqrt
  • b = 2a \cos \alpha

Формулы длины равных сторон(а):

Формулы высоты, медианы, биссектрисы равнобедренного треугольника

  • L — высота=биссектриса=медиана
  • b — сторона (основание)
  • а — равные стороны
  • a — углы при основании
  • b — угол образованный равными сторонами

Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):

Формула высоты, биссектрисы и медианы, через стороны, (L):

Площадь равнобедренного треугольника

  • b — сторона (основание)
  • а — равные стороны
  • h — высота

Формула площади треугольника через высоту h и основание b, (S):

Источник

Читайте также:  Как посчитать площадь трапеции по клеткам
Поделиться с друзьями
Объясняем