Биссектриса прямоугольной трапеции как найти

Содержание
  1. Трапеция. Свойства трапеции
  2. Свойства трапеции
  3. Свойства и признаки равнобедренной трапеции
  4. Вписанная окружность
  5. Площадь
  6. Прямоугольная трапеция
  7. Формулы для прямоугольной трапеции
  8. Свойства прямоугольной трапеции
  9. Задача
  10. Узнать ещё
  11. Биссектриса угла трапеции
  12. Узнать ещё
  13. Биссектрисы трапеции
  14. Формулы трапеции
  15. Виды трапеции
  16. Свойства трапеции
  17. Свойства и признаки равнобедренной трапеции
  18. Формулы площади произвольной трапеции
  19. Формулы площади равнобедренной трапеции
  20. Формулы сторон произвольной трапеции
  21. Формулы сторон равнобедренной трапеции
  22. Формулы сторон прямоугольной трапеции
  23. Формулы диагоналей произвольной трапеции
  24. Формулы диагоналей равнобедренной трапеции
  25. Формулы диагоналей прямоугольной трапеции
  26. Формулы средней линии произвольной трапеции
  27. Формулы средней линии равнобедренной трапеции
  28. Формулы средней линии прямоугольной трапеции
  29. Формулы высоты произвольной трапеции
  30. Формулы высоты равнобедренной трапеции
  31. Формулы боковых сторон прямоугольной трапеции

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия –

Отношение площадей этих треугольников есть .

4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная окружность

Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и , то

Площадь

или где – средняя линия

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Источник

Прямоугольная трапеция

Формулы для прямоугольной трапеции

Свойства прямоугольной трапеции

  • У прямоугольной трапеции два угла обязательно прямые
  • Оба прямых угла прямоугольной трапеции обязательно принадлежат смежным вершинам
  • Оба прямых угла в прямоугольной трапеции обязательно прилежат к одной и той же боковой стороне
  • Диагонали прямоугольной трапеции образуют с одной из боковых сторон прямоугольный треугольник
  • Длина боковой стороны трапеции, перпендикулярной основаниям равна ее высоте
  • У прямоугольной трапеции основания параллельны, одна боковая сторона перпендикулярна основаниям, а вторая боковая сторона — наклонная к основаниям
  • У прямоугольной трапеции два угла прямые, а два других – острый и тупой

Задача

В прямоугольной трапеции большая боковая сторона равна сумме оснований, высота равна 12 см. Найдите площадь прямоугольника, стороны которого равны основаниям трапеции.

Решение.
Обозначим трапецию как ABCD. Обозначим длины оснований трапеции как a (большее основание AD) и b (меньшее основание BC). Пусть прямым углом будет ∠ A.

Площадь прямоугольника, стороны которого равны основаниям трапеции, будет равна
S = ab

Из вершины C верхнего основания трапеции ABCD опустим на нижнее основание высоту CK. Высота трапеции известна по условию задачи. Тогда, по теореме Пифагора
CK 2 + KD 2 = CD 2

Читайте также:  Одежда для женщин с прямоугольной фигурой

Поскольку большая боковая сторона трапеции по условию равна сумме оснований, то CD = a + b
Поскольку трапеция прямоугольная, то высота, проведенная из верхнего основания трапеции разбивает нижнее основание на два отрезка AD = AK + KD. Величина первого отрезка равна меньшему основанию трапеции, так как высота образовала прямоугольник ABCK, то есть BC = AK = b, следовательно, KD будет равен разности длин оснований прямоугольной трапеции KD = a — b.
то есть
12 2 + (a — b) 2 = (a + b) 2
откуда
144 + a 2 — 2ab + b 2 = a 2 + 2ab + b 2
144 = 4ab

Поскольку площадь прямоугольника S = ab (см. выше), то
144 = 4S
S = 144 / 4 = 36

Источник

Узнать ещё

Знание — сила. Познавательная информация

Биссектриса угла трапеции

Рассмотрим задачи, в которых биссектриса угла трапеции делит противоположное основание на отрезки.

Мы уже имели дело с похожей задачей на биссектрису угла параллелограмма, а также рассматривали частный случай для трапеции (когда основание трапеции равно ее боковой стороне, биссектриса трапеции совпадает с ее диагональю).

I. Биссектриса острого угла при большем основании трапеции делит другое основание на отрезки.

1) ∠ BAF= ∠ DAF (так как AF — биссектриса ∠ BAD по условию).

2) ∠ DAF= ∠ BFA (как внутренние накрест лежащие при AD ∥ BC и секущей AF).

3) Следовательно, ∠ BAF= ∠ BFA.

4) Следовательно, треугольник ABF — равнобедренный с основанием AF (по признаку равнобедренного треугольника).

5) Следовательно, AB=BF.

II. Биссектриса тупого угла при меньшем основании трапеции делит другое основание на отрезки.

Аналогично доказывается, что треугольник ABP — равнобедренный:

1) ∠ ABP= ∠ CBP (так как BP — биссектриса ∠ ABC по условию).

2) ∠ CBP= ∠ APB (как внутренние накрест лежащие при AD ∥ BC и секущей BP).

3) Следовательно, ∠ ABP= ∠ APB.

4) Следовательно, треугольник ABP — равнобедренный с основанием BP (по признаку равнобедренного треугольника).

5) Следовательно, AB=AP.

Вывод: в этом случае

биссектриса угла трапеции отсекает от нее равнобедренный треугольник.

Эта задачи — базовые. На их основе существует много других задач.

В следующий раз рассмотрим задачи на пересечение двух биссектрис трапеции.

Источник

Узнать ещё

Знание — сила. Познавательная информация

Биссектрисы трапеции

Рассмотрим некоторые задачи, в которых биссектрисы углов трапеции пересекаются.

I. Биссектрисы углов при боковой стороне трапеции пересекаются.

1)∠ ABC+ ∠ BAD=180 º (как внутренние односторонние при AD ∥ BC и секущей AB).

2) ∠ ABK+ ∠ KAB=( ∠ ABC+ ∠ BAD):2=90 º (так как биссектрисы делят углы пополам).

3) Так как сумма углов треугольника равна 180 º , в треугольнике ABK имеем: ∠ ABK+ ∠ KAB+ ∠ AKB=180 º , отсюда ∠ AKB=180-90=90 º .

Биссектрисы углов при боковой стороне трапеции пересекаются под прямым углом.

Это утверждение, в частности, применяется при решении базовой задачи на трапецию, в которую вписана окружность.

Пусть биссектриса угла ABC пересекает сторону AD в точке S. Тогда треугольник ABS — равнобедренный с основанием BS (доказательство можно посмотреть здесь). Значит, его биссектриса AK является также медианой, то есть точка K — середина BS.

Если M и N — середины боковых сторон трапеции, то MN — средняя линия трапеции и MN ∥ AD.

Так как M и K — середины AB и BS, то MK — средняя линия треугольника ABS и MK ∥ AS.

Поскольку через точку M можно провести лишь одну прямую, параллельную данной, точка K лежит на средней линии трапеции.

Точка пересечения биссектрис трапеции, прилежащих к боковой стороне, лежит на средней линии трапеции.

II. Точка пересечения биссектрис острых углов при основании трапеции принадлежит другому основанию.

В этом случае треугольники ABK и DCK — равнобедренные с основаниями AK и DK соответственно.

Читайте также:  Прямоугольные треугольники найдите острые углы треугольника abc

Таким образом, BC=BK+KC=AB+CD.

Если биссектрисы острых углов трапеции пересекаются в точке, принадлежащей меньшему основанию, то меньшее основание равно сумме боковых сторон трапеции.

В частности, у равнобедренной трапеции в этом случае меньшее основание в два раза больше боковой стороны.

III.Точка пересечения биссектрис тупых углов при основании трапеции принадлежит другому основанию.

В этом случае треугольники ABF и DCF — равнобедренные с основаниями BF и CF соответственно.

Отсюда AD=AF+FD=AB+CD.

Если биссектрисы тупых углов трапеции пересекаются в точке, принадлежащей большему основанию, то большее основание равно сумме боковых сторон трапеции.

У равнобедренной трапеции в этом случае большее основание в два раза больше боковой стороны.

Источник

Формулы трапеции

Для расчёта всех основных параметров трапеции воспользуйтесь калькулятором.

Виды трапеции

  1. Произвольная трапеция – это четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна)
  2. Равнобедренная трапеция – это такая трапеция, у которой боковые стороны равны
  3. Прямоугольная трапеция – это такая трапеция, у которой есть прямые углы при боковой стороне

Свойства трапеции

  1. Средняя линия трапеции (FE) параллельна основаниям и равна их полусумме $$ FE = $$
  2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне
    Например: биссектриса AH отсекает на основании DC отрезок DH , который равен боковой стороне AD
  3. Треугольники AOB и DOC, образованные отрезками диагоналей и основаниями трапеции, подобны
  4. Треугольники AOD и BOC, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь
  5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон (AD + BC = AB + DC)
  6. Отрезок (KL), соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии, т.е. $$ KL = $$
  7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой
  8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности

Свойства и признаки равнобедренной трапеции

  1. В равнобедренной трапеции углы при любом основании равны (∠ADC = ∠DCB и ∠DAB = ∠ABC)
  2. В равнобедренной трапеции длины диагоналей равны (AC = BD)
  3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная
  4. Около равнобедренной трапеции можно описать окружность
  5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований

Формулы площади произвольной трапеции

Площадь трапеции через основания и высоту

Площадь трапеции через среднюю линию и высоту

Площадь трапеции через диагонали и угол между ними

Площадь трапеции через четыре стороны

Формулы площади равнобедренной трапеции

Площадь трапеции через стороны

Площадь трапеции через стороны и угол

$$ S = AD * sin(∠ADC) * (DC — AD * cos(∠ADC)) $$ $$ S = AD * sin(∠ADC) * (AB + AD * cos(∠ADC)) $$

Площадь трапеции через диагонали и угол между ними

Площадь трапеции через среднюю линию, боковую сторону и угол при основании

$$ S = FE * AD * sin(∠ADC) = FE * AD * sin(∠DAB) $$

Площадь трапеции если в нее вписана окружность

Формулы сторон произвольной трапеции

Основание через другое основание и среднюю линию

$$ AB = 2 * FE — DC $$ $$ DC = 2 * FE — AB $$

Основание через другое основание, диагонали и угол между ними

$$ DC = AB + AG * (ctg(∠ADC) + ctg(∠BCD)) $$ $$ AB = DC — AG * (ctg(∠ADC) + ctg(∠BCD)) $$ $$ DC = AB + AD * cos(∠ADC) + BC * cos(∠BCD) $$ $$ AB = DC — AD * cos(∠ADC) — BC * cos(∠BCD) $$ $$ AD = $$ $$ BC = $$

Формулы сторон равнобедренной трапеции

$$ AD = $$ $$ AD = $$ $$ DC = AB + 2 * AG * ctg(∠ADC) $$ $$ AB = DC — 2 * AG * ctg(∠ADC) $$ $$ DC = AB + 2 * AB * cos(∠ADC) $$ $$ AB = DC — 2 * AB * cos(∠ADC) $$

Длина основания через диагональ, боковую сторону и другое основание

Длина боковой стороны через диагональ и основания

Длина основания через высоту, другое основание, диагонали и угол между ними

Длина основания через высоту, другое основание и площадь трапеции

Длина боковой стороны через площадь трапеции, среднюю линию и угол при основании

Длина боковой стороны через площадь трапеции, основания и угол при основании

Формулы сторон прямоугольной трапеции

$$ DC = AB + BC * cos(∠BCD) = AB + AD * ctg(∠BCD) $$ $$ AB = DC — BC * cos(∠BCD) = DC — AD * ctg(∠BCD) $$ $$ DC = AB + \sqrt $$ $$ AB = DC — \sqrt $$

Длина основания через боковую сторону, другое основание, диагонали и угол между ними

Длина основания через площадь трапеции, другое основание и высоту

Высота в прямоугольной трапеции равна стороне, которая перпендикулярна основаниям (AD = AG) $$ DC = <2 * s \over ad>— AB $$ $$ AB = <2 * s \over ad>— DC $$

Формулы диагоналей произвольной трапеции

Длина диагоналей через четыре стороны

Длина диагоналей по теореме косинусов

Длина диагоналей через высоту

Длина диагоналей через стороны и другую диагональ

Длина диагоналей через высоту, основания, другую диагональ и угол между диагоналей

Длина диагоналей через площадь трапеции, другую диагональ и угол между диагоналей

Длина диагоналей через среднюю линию, высоту, другую диагональ и угол между диагоналей

Формулы диагоналей равнобедренной трапеции

Длина диагоналей через стороны

Длина диагоналей по теореме косинусов

Длина диагоналей через высоту основание и угол при основании

Длина диагоналей через сторону и высоту

Формулы диагоналей прямоугольной трапеции

Формулы средней линии произвольной трапеции

Длина средней линии через основания

Длина средней линии через основание, высоту и углы при нижнем основании

Длина средней линии через диагонали, высоту и угол между диагоналями

Длина средней линии через площадь и высоту

Формулы средней линии равнобедренной трапеции

Длина средней линии через основания

Длина средней линии через основание, высоту и углы при нижнем основании

$$ FE = DC — AG * ctg(∠ADC) = AB + AG * ctg(∠ADC) $$

Длина средней линии через основания, боковую сторону и высоту

Длина средней линии через диагонали, высоту и угол между диагоналями

Длина средней линии через площадь и боковую сторону

Формулы средней линии прямоугольной трапеции

Длина средней линии через основания, высоту и угол при нижнем основании

Длина средней линии через основания, боковую сторону и угол при нижнем основании

Длина средней линии через основания и боковые стороны

Длина средней линии через диагонали, высоту и угол между диагоналями

Формулы высоты произвольной трапеции

Длина высоты через четыре стороны

Длина высоты через боковую сторону и прилегающий угол к основанию

$$ AG = AD * sin(∠ADC) = BC * sin(∠BCD) $$

Длина высоты через диагонали и углы между ними

Длина высоты через среднюю линию, диагонали и углы между ними

Длина высоты через площадь и основания

Длина высоты через площадь и среднюю линию

Формулы высоты равнобедренной трапеции

Длина высоты через по сторонам

Длина высоты через боковую сторону и прилегающий угол к основанию

Длина высоты через основания и прилегающий угол к основанию

Длина высоты через диагонали и углы между ними

Длина высоты через площадь и основания

Длина высоты через площадь и среднюю линию

Формулы боковых сторон прямоугольной трапеции

Сторона AD в прямоугольной трапеции равна высоте, поэтому все формулы высоты произвольной трапеции актуальны для стороны AD прямоугольной трапеции.

Сторона BC по трём сторонам

Сторона BC через основания и угол ∠BCD

Сторона BC через Сторону AD

Сторона BC через площадь, среднюю линию и угол ∠BCD

Сторона BC через площадь, основания и угол ∠BCD

Источник

Читайте также:  Калькулятор для расчета гипотенузы прямоугольного треугольника
Поделиться с друзьями
Объясняем