Биссектриса при основании равнобедренного треугольника равна основанию треугольника угла найти углы

Биссектриса угла при основании треугольника

Биссектриса угла при основании равнобедренного треугольника равна его стороне. Найти углы данного треугольника.

Дано : ∆ ABC,

2) Рассмотрим треугольник AFC.

Так как AF=AC, треугольник AFC — равнобедренный с основанием FC.

Следовательно, у него углы при основании равны:

По теореме о сумме углов треугольника

Таким образом, ∠BAC=∠C=2∙36=72º.

В условии задаче не указано, которой из сторон равна биссектриса треугольника — боковой или основанию. Мы рассмотрели вариант, когда биссектриса равна основанию. А может ли биссектриса угла при основании равняться боковой стороне?

Предположим, AF=AB, тогда ∠B=∠AFB.

Найдем углы при основании равнобедренного треугольника ABF

Эта же задача может быть сформулирована несколько иначе.

Биссектриса угла при основании равнобедренного треугольника пересекает боковую сторону под углом, равным углу при основании. Найти углы данного треугольника.

Источник

Биссектрисы равнобедренного треугольника

Свойства биссектрис равнобедренного треугольника

I. Биссектрисы углов при основании равнобедренного треугольника (проведенные к боковым сторонам), равны.

AN и BM — биссектрисы.

Рассмотрим треугольники ACN и BCM

(не забываем, как важно правильно назвать равные треугольники!).

1) AC=BC (по условию (как боковые стороны равнобедренного треугольника))

3) ∠ CAN= ∠ CBM (как углы, на которые биссектрисы делят равные углы при основании равнобедренного треугольника)

Следовательно, ∆ACN=∆BCM (по стороне и двум прилежащим к ней углам).

Из равенства треугольников следует равенство соответствующих сторон: AN=BM.

Что и требовалось доказать.

Если в треугольнике два угла раны, то этот треугольник — равнобедренный (по признаку).

Если в треугольнике две стороны равны, то этот треугольник — равнобедренный (по определению).

Читайте также:  Как измерить окружность головы у ребенка для шапки до года

Отсюда вытекает, что

Биссектрисы, проведенные из равных углов треугольника, равны.

Биссектрисы, проведенные к равным сторонам треугольника, равны.

(Вместо пары треугольников ACN и BCM можно было рассмотреть треугольники ABM и BAN.

1) AB — общая сторона

2) ∠ MAB= ∠ NBA (как углы при основании равнобедренного треугольника)

3) ∠ ABM= ∠ BAN (как углы, образованные биссектрисами равных углов).

Следовательно, треугольники ACN и BCM равны по стороне и двум прилежащим к ней углам).

II. Биссектриса угла при основании равнобедренного треугольника делит боковую сторону на отрезки, пропорциональные боковой стороне и основанию.

Источник

Биссектриса угла при основании равнобедренного треугольника равна стороне треугольника.Определите углы данного треугольника

Пусть сторона исходного треугольника равна a. По формуле площади равностороннего треугольника, S=√3a²/4=25√3. Тогда площадь меньшего треугольника равна √3a²/20=5√3.

Докажем, что меньший треугольник также равносторонний. Так как он отсекается прямой, параллельной стороне исходного треугольника, два угла маленького треугольника, прилежащие к этой прямой, соответственно равны двум углам исходного треугольника и равны 60 градусам, а третий угол совпадает с углом исходного треугольника, так что тоже равен 60 градусам, что и требовалось.

Теперь мы опять можем воспользоваться формулой площади равностороннего треугольника. Пусть сторона меньшего треугольника равна b, тогда его площадь будет равна √3b²/4. Значит, √3b²/4=5√3, откуда b²=20, b=2√5. Периметр равностороннего треугольника равен его утроенной стороне, то есть P=3b=6√5

Т у это ранобедреный треугольник то бисиктриса медиана и высота проведёного из большего угла это одно и тоже, а т к это прямоугольный треугольник , то бисиктриса его большего угла =45 градусов , а т к мы провель медиану,высоту,бесиктрису из этого угла , то меньшие углы этого прямоугольного треугольника будут равны по 45 градусов)

исходя из вышеданого можно найти катиты прямоуг треугольника т к он равнобедреный ,то формула его катитов будет такова
катит = корень квадратный( )=корень из 9=3
делил на половину т к катиты одинаковые а всё остальное по теоремепифагора гипотинуза в квадрате =1катит в квадрате+2катит в квадрате

Читайте также:  Равноускоренное движение точки по окружности это

Источник

Свойства биссектрисы равнобедренного треугольника

В данной публикации мы рассмотрим основные свойства биссектрисы равнобедренного треугольника (внутренней и внешней), а также разберем пример решения задачи по данной теме.

Примечание: напомним, что равнобедренным называется треугольник, в котором две стороны равны (боковые), а третья является основание фигуры.

Свойства биссектрисы равнобедренного треугольника

Свойство 1

В равнобедренном треугольнике биссектрисы, проведенные к боковым сторонам, равны между собой.

  • AB = BC, т.к. являются боковыми сторонами равнобедренного △ABC;
  • AF = CG, т.к. это биссектрисы, проведенные к боковым сторонам треугольника (или биссектрисы углов BAC и ACB, которые также равны между собой).

Обратная формулировка: если две из трех биссектрис в треугольнике равны, значит он является равнобедренным.

Свойство 2

В равнобедренном треугольнике биссектриса, проведенная к основанию, одновременно является и медианой и высотой.

  • BH – биссектриса угла ABC, проведенная к основанию AC;
  • BH – медиана, значит она делит AC пополам, т.е. AH = HC;
  • BH – высота, следовательно, она перпендикулярна AC.

Свойство 3

Если известны стороны равнобедренного треугольника, то длину биссектрисы, проведенную к основанию, можно посчитать по формуле:

Примечание: данная формула следует из теоремы Пифагора ( l и a – катеты прямоугольного треугольника, b – его гипотенуза).

Свойство 4

Внешняя биссектриса угла равнобедренного треугольника, расположенного напротив его основания, параллельна этому основанию.

  • BD – внешняя биссектриса ∠ABC треугольника;
  • BD параллельна основанию AC.

Примечание: к равнобедренному треугольнику применимы и другие свойства биссектрисы, приведенные в нашей публикации – “Определение и свойства биссектрисы угла треугольника”.

Пример задачи

Биссектриса равнобедренного треугольника с боковой стороной 25 см равняется 20 см. Найдите периметр фигуры.

Решение
Воспользуемся формулой, приведенной в Свойстве 3, чтобы найти длину основания.
a 2 = b 2 – l 2 = 25 2 – 20 2 = 225 .

Извлекаем квадратный корень из найденного значения и получаем 15 см.
Следовательно, основание треугольника равно 30 см (15 см ⋅ 2).

Периметр фигуры равен сумме всех ее сторон, т.е.: 25 см + 25 см + 30 см = 80 см.

Источник

Биссектриса при основании равнобедренного треугольника равна основанию треугольника угла найти углы

Вопрос по геометрии:

Биссектриса угла при основании равнобедренного треугольника равна стороне треугольника. Определите угол при основании.

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

если биссектриса угла при основании равна стороне треугольника, значит угол при вершине (противолежащий основанию) треугольника равен 1/2 углу при основании.

угол при вершине равен Х,

угол при основании 2Х

х=72 град. угол при основании

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

Источник

Поделиться с друзьями
Строю.ру
Adblock
detector