Амплитудная модуляция прямоугольных импульсов

импульсно – модулированные сигналы.

В импульсной модуляции в качестве носителя модулированных сигналов используются последовательности импульсов, как правило – прямоугольных. В беспроводных системах передачи данных (в радиосвязи) эти последовательности заполняются высокочастотными колебаниями, создавая тем самым двойную модуляцию. Как правило, эти виды модуляции применяются при передаче дискретизированных данных. Для прямоугольных импульсов наиболее широко используются амплитудно-импульсная (АИМ) и широтно-импульсная (ШИМ) модуляция.

Амплитудно-импульсная модуляция (АИМ) заключается в изменении приращения амплитуды импульсов пропорционально функции управляющего сигнала при постоянной длительности импульсов и периоде их следования:

U(t) = Uo + k·s(t), tи = const, T = const. (15.4.1)

Спектр АИМ рассмотрим на примере модулирования однотонального сигнала s(t), приведенного на рис. 15.4.1. Напишем уравнение модулированного сигнала в следующей форме:

u(t) = (1+M cos Wt)·f(t), (15.4.2)

где f(t) – периодическая последовательность прямоугольных импульсов с частотой wo, которую можно аппроксимировать рядом Фурье (без учета фазы):

f(t) = Uo + Un cos nwot. (15.4.3)

Подставляя (15.4.3) в (15.4.2), получаем:

u(t) = (1+M cos Wt)Uo+ Un cos nwot ·(1+M cos Wt)

u(t) = Uo + UoM cos Wt + Un cos nwot +

+ 0.5M Un cos (nwo+W)t + 0.5M Un cos (nwo-W)t. (15.4.2)

Форма спектра, в начальной части спектрального диапазона, приведена на рис. 15.4.1. В целом, спектр бесконечен, что определяется бесконечностью спектра прямоугольных импульсов. Около каждой гармоники nwo спектра прямоугольных импульсов появляются боковые составляющие nwo±W, соответствующие спектру моделирующей функции (при многотональном сигнале – боковые полосы спектров). При дополнительном высокочастотном заполнении импульсов весь спектр смещается в область высоких частот на частоту заполнения.

Широтно-импульсная модуляция (ШИМ, в английской терминологии pulse width modulation, PWM), которую иногда называют модуляцией по длительности импульсов (ДИМ), заключается в управлении длительностью импульсов пропорционально функции управляющего сигнала при постоянной амплитуде импульсов и периоде следования по фронту импульсов:

t(t) = to + k·s(t), U = const, T = const. (15.4.3)

Рассмотрим выполнение ШИМ в простейшем варианте на примере гармонического колебания, приведенного на рис. 15.4.2.

Рис. 15.4.2. Широтно-импульсная модуляция.

Передаваемая кривая дискретизируется, при этом имеет значение, как интервал дискретизации, так и количество уровней квантования. При передаче данных прямоугольные импульсы начинаются в моменты дискретных отсчетов данных, а длительность импульсов устанавливается пропорциональной значению отсчетов, при этом максимальная длительность импульсов не должна превышать интервала дискретизации данных. Пример сформированных импульсов приведен на рис. 15.4.2 непосредственно под дискретизированной гармоникой, при этом число уровней квантования гармоники принято равным 8.

Рис. 15.4.3. Спектр ШИМ – сигнала. Рис. 15.4.4. Восстановленный сигнал.

На рис. 15.4.3 приведен спектр сформированного сигнала ШИМ. В начальной части спектра он содержит постоянную составляющую среднего уровня сигнала и пик частоты гармоники, закодированной в ШИМ – сигнале. Если выделить из спектра эти две составляющие, то восстанавливается исходный сигнал с погрешностью квантования, приведенный на рис. 15.4.4. Естественно, что при малом числе уровней квантования погрешность восстановления исходного гармонического сигнала очень велика.

Попутно заметим, что широтно-импульсная модуляция с последующим выделением постоянной составляющей может весьма эффективно использоваться (и используется) для слежения за средним уровнем сигнала и автоматического регулирования его динамического диапазона, как, например, в системах установки громкости звука и яркости цветов и изображения в целом в современных телевизионных установках.

Временная импульсная модуляция (ВИМ) представляет собой девиацию импульсов по временной оси по закону модулирующего сигнала, и по существу аналогична угловой модуляции гармонической несущей. Она также может быть фазовой (ФИМ) или частотной (ЧИМ).

Читайте также:  Зажимы для воздуховодов прямоугольного сечения

Кодово-импульсная модуляция заключается в том, что в точках дискретизации модулирующего сигнала производится квантование его значений и кодирование квантованных значений, как правило, в двоичной системе исчисления. Кодированные значения затем передаются при помощи соответствующей кодовой последовательности стандартных символов.

15.5. Модуляция символьных и кодовых данных [25].

В настоящее время информация передается по каналам связи в основном в цифровой форме. Числа при передаче с периодом Т поступают от источника информации и называются символами (symbol), а частота передачи символов – символьной скоростью (symbol rate) fT=1/T.

Символьные последовательности являются дискретными квантованными сигналами, которые формируются следующим образом. Весь диапазон сигнала s(t) делится на Qs разрешенных уровней с некоторым шагом Dq. Сигнал s(t) дискретизируется с равномерным шагом, а мгновенные значения отсчетов сигнала округляются до ближайшего разрешенного уровня Qs(t). Полученный сигнал называется квантованным АИМ (КАИМ). Значения сигнала Qs(t) отличаются от s(t) на так называемый шум квантования, которым определяется погрешность восстановления исходного сигнала. С увеличением числа уровней квантования шум квантования уменьшается. Наличие шума является недостатком цифровых методов передачи, однако она открывает и новые возможности передачи. В частности, зная всю шкалу разрешенных уровней на приеме, можно «очистить» сигнал от внешних помех, если их уровень меньше 0,5Dq. Каждому из возможных символов Qs устанавливается определенный набор параметров несущего колебания, которые поддерживаются постоянными на интервале Т до прихода следующего символа. Это означает преобразование последовательности чисел в ступенчатый сигнал (кусочно-постоянная интерполяция) который используется в качестве модулирующего сигнала. Соответственно, параметры несущего колебания, на которые переносится ступенчатый сигнал, также меняются скачкообразно. Такой способ модуляции несущей называется манипуляцией (keying), и может выполняться с использованием всех рассмотренных методов модулирования.

Амплитудно-манипулированные сигналыпростейшего типа представляют собой последовательности радиоимпульсов, разделенные паузами. Такие сигналы используются в радиотелеграфии и в системах передачи дискретных данных. Форма огибающей радиоимпульсов в общем случае может быть произвольной, паузы могут отличаться по длительности от радиоимпульсов.

На рис. 15.5.1. приведен пример амплитудно-манипулированного сигнала:

Рис. 15.5.1. АМП-сигнал. Рис. 15.5.2. Модуль спектра АМП-сигнала.

с прямоугольной П-формой огибающей. Соответственно, в частотной области спектр АМП – сигнала образуется сверткой спектра огибающей функции (в данном случае – спектра прямоугольного импульса) со спектром косинусного колебания (дельта — функции на частоте fo). Модуль спектральной плотности сигнала приведен на рис. 15.5.2. Спектр прямоугольного импульса довольно слабо затухает и простирается неограниченно далеко, а поэтому его использование в качестве огибающей АМП — сигнала не рекомендуется, хотя и является наиболее простым по техническому исполнению.

Рис. 15.5.3. Рис. 15.5.4.

На рис. 15.5.3. приведен пример формы классического АМП сигнала при передаче нескольких символов, каждому из которых соответствует индивидуальная амплитуда несущей частоты при постоянной длительности интервалов посылки. Модуль спектра сигнала приведен на рис. 15.5.4 и тоже имеет достаточно большую ширину значимой части спектра вокруг несущей частоты.

Рис. 15.5.5.

Естественно, что при передаче данных частотный диапазон канала передачи данных ограничивается значимой частью спектра, ширина которого устанавливается по допустимой степени искажения приемных сигналов. Степень искажения сигналов существенно зависит от длительности посылок. Пример искажения вышеприведенного сигнала при ограничении спектра интервалом 40-60 кГц приведен на рис. 15.5.5.

Угловая манипуляция,как правило, использует частотные методы модулирования, в которых каждому возможному значению передаваемого символа сопоставляется индивидуальное значение частоты гармонической несущей. При этом в точках сопряжения интервалов посылок могут происходить скачки напряжения, с соответствующим усложнением спектра модулированного сигнала. Самый простой способ – синусоидальное начало несущей на каждом интервале с кратным количеством периодов несущей в посылке. При более сложных способах, независимых от точного сопряжения несущих частот с интервалами посылок, осуществляется управление скоростью изменения фазы несущих на границах посылок.

Читайте также:  Как сделать прямоугольный воздушный змей

Демодуляция сигналов осуществляется корреляционными методами. Сущность методов – вычисление взаимной корреляции между принимаемым сигналом и набором опорных частот, используемых при модулировании, с идентификацией символов по максимумам взаимной корреляции.

Для повышения помехоустойчивости передачи данных желательно, чтобы разносимвольные посылки были некоррелированны. Если для бинарных символов 0 и 1 принять частоты посылок равными

то их ВКФ при нулевом временном сдвиге определится выражением:

B01(0) = s(t) s1(t) dt = ½ (sin (ω1o)T)/(ω1o) + ½ (sin (ω1o)T)/(ω1o).

При (ω1o)T >> 1 первым слагаемым можно пренебречь, оно много меньше второго. А второе слагаемое обращается в нуль при (ω1o)T = πk, где k = 1, 2, . – целое число. Отсюда, минимальное значение между частотами манипуляции для некоррелированных посылок определяется выражениями:

где fT – символьная скорость.

Фазовая манипуляция применяется значительно реже, в связи со значительными сложностями измерения абсолютных значений начальных фаз в посылках. Проще определяется относительный фазовый сдвиг в соседних посылках, поэтому обычно используется фазоразностная манипуляция.

1. Баскаков С.И. Радиотехнические цепи и сигналы: Учебник для вузов.- М.: Высшая школа, 1988.

25. Сергиенко А.Б. Цифровая обработка сигналов. – СПб.: Питер, 2003. – 608 с.

Источник

Амплитудная модуляция на пальцах

В недавней статье «Амплитудная модуляция произвольного сигнала» её автор довольно сумбурно попытался представить своё понимание формирования спектра при амплитудной модуляции. Но отсутствие иллюстраций и избыток математики с привлечением интегральных преобразований помешало сообществу понять мысли автора и оценить статью по достоинству; в то время как тема это достаточно простая — и рассмотреть которую мы попробуем ещё раз, на этот раз с картинками и привлечением Wolfram Mathematica.

Итак, идея амплитудной модуляции состоит в том, чтобы передавать низкочастотный сигнал — голос или музыку — модулируя высокочастотный (несущий) сигнал, многократно превышающий слышимый диапазон и занимающий узкую полосу частот в радиоэфире. Сама модуляция осуществляется простым умножением сигнала на несущий:

Здесь у нас в качестве несущей выступает синусоида с частотой 5:

А сам сигнал — с частотой 1:

Можно заметить, что сигнал смещён вверх и имеет только положительные значения. Это не случайно и является обязательным условием для возможности последующего его корректного восстановления. Как же его восстановить? Очень просто! Нужно сдвинуть фазу промодулированного сигнала на 90 градусов (операция, известная как преобразование Гильберта), и посчитать корень из суммы квадратов модулированного и преобразованного сигналов:

В более простом (но грубом) варианте преобразование Гильберта можно заменить задержкой сигнала на четверть периода несущий частоты, а итоговый сигнал дополнительно отфильтровать фильтром низких частот. В ещё более простом варианте можно вообще не считать корней и квадратов, а отфильтровать сигнал по абсолютному значению (что и применяется обычно в радиоприёмниках).

Теперь посмотрим, что у нас происходит со спектрами. Посчитаем преобразование Фурье от несущей:

Так как дельта-функция Дирака не является функцией в классическом смысле, её график нельзя построить стандартным способом; поэтому сделаем это вручную, используя общепринятое начертание:

Ожидаемо получили ту же частоту, что и в начальной формуле. Наличие ещё одной такой же частоты, но со знаком минус, не случайно — это явление называется Hermitian symmetry и является следствием того, что рассматриваемая функция сугубо действительная и в комплексном представлении имеет нулевую мнимую компоненту. Отсутствие мнимых компонент в спектре после преобразования обусловлено тем, что изначально наши функции ещё и чётные (симметричные относительно нуля).

Читайте также:  Прямоугольные треугольники подобны правильно или нет

Теперь сделаем преобразование Фурье для самого сигнала:

Здесь мы дополнительно получили дельта-функцию Дирака в центре координат — вследствие наличия в сигнале постоянной составляющей, которая не имеет колебаний по определению — что позволяет её рассматривать как нулевую частоту.

Что же будет со спектром, если их перемножить? Посмотрим:

Из теории мы знаем, что умножение во временном домене равносильно свертке в частотном (и наоборот, что широко используется при FIR-фильтрации). А поскольку один из подвергаемых свёртке сигналов состоял только из одной (положительной и отрицательной) частоты, то в результате свёртки мы получили просто линейный перенос сигнала вверх по частоте (в обе стороны). И так как симметрия осталась, сигнал у нас по-прежнему не имеет мнимой компоненты.

Приведём его теперь к комплексному (аналитическому) виду, обнулив отрицательную область частот:

и сделаем обратное преобразование Фурье:

Так как функция теперь комплексная, для построения её графика необходимо отдельно извлечь действительную и мнимую компоненты:

Теперь у нашего сигнала появилась мнимая компонента, представляющая собой сдвинутый на 90 градусов исходный сигнал. Это будет более очевидным, если представить полученную функцию в тригонометрическом виде:

Пока не очень очевидно. Попробуем упростить:

Теперь больше похоже на правду — и как видим, функция нашего исходного сигнала тоже упростилась. Попробуем её вернуть к оригинальному виду:

Множитель 1/2 появился не случайно — ведь обнулив половину спектра, мы соответственно и уменьшили мощность сигнала. Ну а теперь, имея модулированный комплексный сигнал, мы можем взять и этот модуль посчитать:

Модуль комплексного числа как раз и считается через корень суммы квадратов мнимого и действительных компонентов. И отсюда понятно, почему кодируемый сигнал должен состоять только из положительных значений — если он будет включать отрицательные значения, то после восстановления они также станут положительными, что и называется перемодуляцией:

Восстановление сигнала также возможно и при помощи квадратурного гетеродина — когда модулированный сигнал снова умножается на несущую частоту, но на этот раз — комплексную:

За счёт того, что комплексная частота в частотной области имеет только один импульс без дублирования его в отрицательной области частот — то в результате свёртки мы получим линейный перенос спектра, при которой отрицательная часть спектра встанет обратно в центр, а положительная — сдвинется ещё дальше, и её останется только отфильтровать фильтром нижних частот.

Заключение

Как видим, в рассмотрении амплитудной модуляции через преобразовании Фурье нет ничего сложного; если же рассматривать её исключительно на школьном уровне, то достаточно вспомнить, что произведение (несущей) суммы (представление сигнала в виде тригонометрического ряда) равнозначно сумме произведений (каждого члена ряда по отдельности на несущую частоту) — и, соответственно, каждое такое произведение раскладывается на сумму двух синусоид по уже озвученной автором исходной статьи формуле.

Внимательный читатель также мог заметить, что раз в результате модуляции мы получили симметричный относительно несущей частоты спектр — значит, имеет место быть избыточность данных и можно оставить только одну боковую полосу, сократив тем самым занимаемую полосу частот в радиоэфире. Такая технология действительно имеется, но это — уже совсем другая история.

Источник

Поделиться с друзьями
Объясняем