146 найдите ускорение свободного падения

Содержание
  1. Скорость, время и высота свободного падения
  2. Онлайн калькулятор
  3. Скорость свободного падения
  4. Если известно время падения
  5. Если известно расстояние (высота падения)
  6. Расстояние и время свободного падения
  7. Теория
  8. Ускорение свободного падения
  9. Как найти скорость свободного падения
  10. Зная время падения:
  11. Зная высоту падения:
  12. Время свободного падения
  13. Зная высоту падения:
  14. Зная скорость в конце падения:
  15. Высота свободного падения
  16. Зная время падения:
  17. Зная скорость в конце падения:
  18. Ускорение свободного падения
  19. Сила тяготения
  20. Ускорение свободного падения
  21. Ускорение свободного падения на разных планетах
  22. И кому же верить?
  23. Ускорение свободного падения
  24. От чего зависит ускорение свободного падения?
  25. Как найти ускорение свободного падения?
  26. Формула ускорения свободного падения
  27. Пример расчёта ускорения свободного падения (для Земли):
  28. Как узнать время падения тела?
  29. Где нужны знания о свободном падении?
  30. Ускорение свободного падения
  31. Формула для расчета ускорения свободного падения
  32. Интересные факты
  33. Ускорение свободного падения у поверхности некоторых небесных тел
  34. Как вывести формулу ускорения свободного падения

Скорость, время и высота свободного падения

Онлайн калькулятор

Скорость свободного падения

Если известно время падения

Ускорение свободного падения g =
Время падения

Если известно расстояние (высота падения)

Ускорение свободного падения g =
Расстояние h =

Время падения
Скорость свободного падения

Расстояние и время свободного падения

Ускорение свободного падения g =
Скорость свободного падения

Теория

Ускорение свободного падения

Ускорение свободного падения (g) — ускорение, которое придаёт падающему телу сила тяжести. У каждого небесного тела своё значение ускорения свободного падения, например, у планеты Земля оно составляет g = 9,80665 м/с².

Для небесных тел солнечной системы ускорение свободного падения имеет следующие значения:

  • Земля – 9,80665 м/с²
  • Луна – 1,62 м/с²
  • Меркурий – 3,7 м/с²
  • Венера – 8,87 м/с²
  • Марс – 3,711 м/с²
  • Сатурн – 10,44 м/с²
  • Юпитер – 24,79 м/с²
  • Нептун – 11,15 м/с²
  • Уран – 8,87 м/с²
  • Плутон – 0,617 м/с²
  • Ио – 1,796 м/с²
  • Европа – 1,315 м/с²
  • Ганимед – 1,428 м/с²
  • Каллисто – 1,235 м/с²
  • Солнце – 274,0 м/с²

Как найти скорость свободного падения

Скорость свободного падения V можно рассчитать, зная расстояние (высоту) падения h или время падения t.

Зная время падения:

Формула
Пример

Для примера, рассчитаем с какой скоростью врежется в землю монета, брошенная из окна небоскрёба, если известно, что она упала за 5 секунд:

Монетка ударилась об землю на скорости 49 м/с

Зная высоту падения:

Формула
Пример

Для примера, определим скорость при ударе об землю ядра скинутого с 100 метровой вышки:

V = √ 2 ⋅ 100 ⋅ 9.8 = √ 1960 ≈ 44 м/с

Ядро ударится об землю на скорости 44 м/с

Время свободного падения

Время свободного падения — время, которое потребуется телу для того чтоб упасть на землю под действием силы тяжести. Чтобы рассчитать время свободного падения t необходимо знать высоту падения h или скорость в конце падения V.

Зная высоту падения:

Формула
Пример

Посчитаем чему будет равно время свободного падения t тела упавшего с высоты h = 100 метров:

Время свободного падения данного тела составит 4.5 секунды.

Зная скорость в конце падения:

Формула
Пример

Если тело после падения ударилось об землю со скоростью V = 50 м/с, то сколько секунд оно падало?

Время падения данного тела составило 5.1 секунды.

Высота свободного падения

Высота падения — высота с которой сбросили тело, численно равная расстоянию, которое пролетает тело за время падения. Чтобы рассчитать высоту падения h необходимо знать время падения t или скорость в конце падения V.

Зная время падения:

Формула
Пример

Для примера определим с какой высоты сбросили тело, если известно, что время его падения составило t = 5с:

Читайте также:  Как найти объем квартиры зная площадь

h = 9.8 ⋅ 5² ÷ 2 = 122.5 м

Тело сбросили с высоты в 122.5 метров.

Зная скорость в конце падения:

Формула
Пример

Если тело после падения ударилось об землю со скоростью V = 60 м/с, то с какой высоты оно упало?

h = 60² ÷ 2⋅9.8 = 3600 ÷ 19.6 = 183.67 м

Источник

Ускорение свободного падения

О чем эта статья:

Сила тяготения

В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу с силой, которая прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Формула силы тяготения согласно этому закону выглядит так:

Закон всемирного тяготения

F — сила тяготения [Н]

M — масса первого тела (часто планеты) [кг]

m — масса второго тела [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 · 10 −11 м 3 · кг −1 · с −2

Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.

Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.

Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.

Ускорение свободного падения

Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.

Сила тяжести — сила, с которой Земля притягивает все тела.

Сила тяжести

F = mg

F — сила тяжести [Н]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2 , но подробнее об этом чуть позже. 😉

На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору или подвес. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.

Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.

Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.

На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.

Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:

Приравниваем правые части:

Делим на массу тела левую и правую части:

Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.

Формула ускорения свободного падения

g — ускорение свободного падения [м/с 2 ]

Читайте также:  Как найти замедленное ускорение

M — масса планеты [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 · 10 −11 м 3 · кг −1 · с −2

Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.

Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.

Ускорение свободного падения на разных планетах

Выше мы уже вывели формулу ускорения свободного падения. Давайте попробуем рассчитать ускорение свободного падения на планете Земля.

Для этого нам понадобятся следующие величины:

  • Гравитационная постоянная
    G = 6,67 · 10 −11 м 3 · кг −1 · с −2
  • Масса Земли
    M = 5,97 × 10 24 кг
  • Радиус Земли
    R = 6371 км

Подставим значения в формулу:

Есть один нюанс: в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают то же значение, что мы указали выше: g = 9,81 м/с 2 . В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с 2 .

И кому же верить?

Все просто: для кого решается задача, тот и главный. В экзаменах берем g = 10 м/с 2 , в школе при решении задач (если в условии задачи не написано что-то другое) берем g = 9,8 м/с 2 .

Ниже представлена таблица ускорений свободного падения и других характеристик для планет Солнечной системы, карликовых планет и Солнца.

Небесное тело

Ускорение свободного падения, м/с 2

Диаметр, км

Расстояние до Солнца, миллионы км

Масса, кг

Соотношение с массой Земли

Источник

Ускорение свободного падения

Ускорение свободного падения — движение объекта, который получает ускорение из-за действующей на него силы тяжести; обозначается буквой g и измеряется в м/с². На поверхности Земли ускорение свободного падения примерно равно 9,81 м/с².

На полюсах (Южном и Северном) ускорение свободного падения будет больше, а на экваторе — меньше. Это происходит из-за двух фактов:

  • Земля — не идеальный круг, а приплюснутый шар и её радиус на полюсах меньше, чем на экваторе (ускорение зависит от радиуса),
  • центробежные силы (при вращении Земли) минимально компенсируют гравитацию больше на экваторе, чем на полюсах.

В вакууме тела падают с одинаковой скоростью потому, что ускорение свободного падения не зависит от массы.

Таблица ускорения свободного падения небесных тел

Небесное тело g (в м/с²)
Луна 1,62
Солнце 274
Меркурий 3,72
Венера 8,87
Земля 9,81
Марс 3,711
Юпитер 24,79
Сатурн 10,44
Уран 8,87
Нептун 11,15

От чего зависит ускорение свободного падения?

Ускорение свободного падения зависит от массы планеты и радиуса планеты — чем она тяжелее, тем сильнее притягивает тела (т.е. масса тела не влияет на ускорение).

Возможно для будущих вычислений нужны будут эти данные:

  1. Масса Земли = 5,98 × (10^24) кг (или 5,972E24 кг)
  2. Радиус Земли = 6 371 км = 6,37×(10^6) м.

Как найти ускорение свободного падения?

Формула ускорения свободного падения

Гравитационная постоянная («G», не путайте с «g») — это фундаментальная физическая константа, которая примерно равна

и связывает силы гравитационного притяжения между двумя телами (G) с их массами (m1 и m2) и расстоянием между ними (R) в формуле:

Пример расчёта ускорения свободного падения (для Земли):

Как узнать время падения тела?

Формула времени свободного падения (когда тело падает вертикально):

  • t — время
  • V — скорость тела
  • g — ускорение ≈ 9,8 м/с²
  • h — расстояние

Нужно найти скорость и время падения.

V² = 0² + 2 × 9,8 м/с² × 20 м ⇔ V = √392 м/с ≈ 19,8 м/с

Зная скорость, применяем эту формулу:

t = V / g = (19,8 м/с) / (9,8 м/с²) ≈ 2,02 с

Либо используя только высоту и ускорение:

t = √(2h/g) = √(2 × 20 м / 9,8 м/с²) ≈ 2,02 с

Где нужны знания о свободном падении?

Они могут понадобиться:

  • в авиации,
  • в космонавтике,
  • при поиске полезных ископаемых (там, где есть залежи тяжёлых ископаемых, g меняется),
  • при разработке новых лыжных трамплинов и полос приземления,
  • при разработке новых автомобилей (рассчитываются наилучшие показатели для экономии топлива).

Источник

Ускорение свободного падения

Выберем тело, например, камень. Расположим его не некотором расстоянии от поверхности земли. Расстояние от центра Земли до камня равно \( R = \left( r + h \right) \), как представлено на рисунке 1.

Пусть на камень действует только сила, с которой Земля притягивает его, а других сил нет (нет, например, силы сопротивления воздуха).

Свободное падение – это движение тела под действием только одной силы — силы притяжения.

Из законов Ньютона известно: если на тело действует сила, то тело получает ускорение.

Ускорение свободного падения – это ускорение, с которым движется тело, когда на него действует только сила тяжести.

Формула для расчета ускорения свободного падения

Ускорение свободного падения можно посчитать по формуле:

\( g \left( \frac<\text<м>>> \right) \) (метры, деленные на секунду в квадрате) – ускорение свободного падения

\( M \left( \text <кг>\right) \) (килограммы) — масса планеты, которая притягивает

\( r \left( \text <м>\right) \) (метры) – радиус планеты

\( h \left( \text <м>\right) \) (метры) — расстояние от поверхности планеты до тела

\(G \ = 6<,>67 \cdot 10^ <-11>\left( \text <Н>\cdot \frac<\text<м>^2><\text<кг>^2> \right)\) — гравитационная постоянная

Интересные факты

У разных планет ускорение свободного падения различается.

  • чем больше масса планеты (или звезды), тем больше будет ускорение свободного падения рядом с такой планетой (или звездой);
  • чем дальше от планеты, тем меньше ускорение свободного падения;
  • на полюсах ускорение свободного падения больше, чем на экваторе планеты;

Все тела под действием силы тяжести падают с одинаковым ускорением! Это ускорение не зависит от массы тела.

Из житейского опыта мы знаем: чем больше площадь тела, тем больше времени ему нужно, чтобы упасть с какой-либо высоты. При своем падении тело опирается на воздух, поэтому, к примеру, лист бумаги будет падать дольше, чем шарик из пластилина, или гирька.

В безвоздушном пространстве опираться не на что. Поэтому гирька, лист бумаги, птичье перо и пластилиновый шарик, стартовав с одной и той же высоты одновременно, упадут на поверхность планеты тоже одновременно.

Ускорение свободного падения у поверхности некоторых небесных тел

  • у поверхности Земли \( g = 9<,>8 \left( \frac<\text<м>>> \right) \)
  • у поверхности Луны \( g = 1<,>68 \left( \frac<\text<м>>> \right) \)
  • у поверхности Марса \( g = 3<,>86 \left( \frac<\text<м>>> \right) \)
  • у поверхности Солнца \( g = 273<,>1 \left( \frac<\text<м>>> \right) \)
  • у поверхности Юпитера \( g = 23<,>95 \left( \frac<\text<м>>> \right) \)

Как вывести формулу ускорения свободного падения

Рассмотрим камень, находящийся на некотором расстоянии от Земли.

Земля и камень притягиваются, запишем закон притяжения между планетой и камнем

С другой стороны, у камня есть вес, так как на него действует сила тяжести.

Мы можем записать эти уравнения в виде системы.

\[ \begin \displaystyle F = G \cdot \frac<( r + h)^<2>> \\ \displaystyle F_<\text<тяж>> = m \cdot g \end \]

Земля и камень притягиваются, благодаря этому на камень действует сила тяжести. На языке математики это запишется так:

А если равны левые части уравнений, то будут равны и правые:

Масса \( m \) камня встречается в обеих частях уравнения. Поделим обе части уравнения на массу камня.

Источник

Читайте также:  Где посмотреть объем оперативной памяти на самсунг
Поделиться с друзьями
Объясняем